hit counter script
ABB Relion Technical Manual
ABB Relion Technical Manual

ABB Relion Technical Manual

Generator protection
Hide thumbs Also See for Relion:
Table of Contents

Advertisement

®
Relion
650 series
Generator protection REG650 ANSI
Technical manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB Relion

  • Page 1 ® Relion 650 series Generator protection REG650 ANSI Technical manual...
  • Page 3 Document ID: 1MRK 502 048-UUS Issued: October 2016 Revision: A Product version: 1.3 © Copyright 2013 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
  • Page 5 This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer.
  • Page 6 (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Table of contents Table of contents Section 1 Introduction................33 This manual.................... 33 Intended audience.................. 33 Product documentation................34 Product documentation set..............34 Document revision history..............35 Related documents................35 Symbols and conventions...............36 Symbols.....................36 Document conventions..............37 Section 2 Available functions.............. 39 Main protection functions................39 Back-up protection functions..............
  • Page 8 Table of contents Identification..................63 Function block................... 64 Signals....................64 Basic part for LED indication module............65 Identification..................65 Function block................... 65 Signals....................65 Settings....................66 LCD part for HMI function keys control module........67 Identification..................67 Function block................... 67 Signals....................67 Settings....................67 Operation principle..................68 Local HMI...................68 Display..................68 LEDs.....................71...
  • Page 9 Table of contents Elimination of zero sequence currents......... 98 Restrained and unrestrained limits of the differential protection...99 Fundamental frequency negative sequence differential currents101 Internal/external fault discriminator..........103 Unrestrained, and sensitive negative sequence protections..107 Instantaneous differential currents..........109 Harmonic and waveform block criteria........109 Switch onto fault feature.............
  • Page 10 Table of contents Operation principle................135 Function calculation principles............137 Fundamental frequency differential currents......137 Supplementary criteria..............142 Harmonic restrain............... 145 Cross-block logic scheme............145 Simplified block diagrams............146 Technical data................. 148 Section 7 Impedance protection............151 Power swing detection ZMRPSB (68)..........151 Identification..................151 Functionality..................
  • Page 11 Table of contents Signals.....................168 Settings....................168 Monitored data.................169 Operation principle................170 Technical data................. 173 Out-of-step protection OOSPPAM (78)..........173 Identification..................173 Functionality..................174 Function block................. 174 Signals.....................174 Settings....................175 Monitored data.................176 Operation principle................177 Lens characteristic..............180 Detecting an out-of-step condition..........182 Maximum slip frequency.............183 Taking care of the circuit breaker soundness......184 Design..................
  • Page 12 Table of contents Second harmonic blocking element..........202 Technical data................. 203 Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC (51N/67N)............. 203 Identification ................... 203 Functionality..................204 Function block................. 204 Signals.....................205 Settings....................206 Monitored data.................209 Operation principle................209 Operating quantity within the function........209 Internal polarizing...............
  • Page 13 Table of contents Functionality..................234 Function block................. 235 Signals.....................235 Settings....................236 Monitored data.................237 Operation principle................237 Technical data................. 241 Breaker failure protection 3-phase activation and output CCRBRF ( 50BF)....................241 Identification..................241 Functionality..................241 Function block................. 242 Signals.....................242 Settings....................243 Monitored data.................244 Operation principle................
  • Page 14 Table of contents Signals..................256 Settings..................257 Monitored data................258 Operation principle................258 Low pass filtering................260 Technical data................. 261 Accidental energizing protection for synchronous generator AEGGAPC (50AE)................261 Identification..................261 Functionality ................... 262 Function block................. 262 Signals.....................262 Settings....................263 Monitored data.................263 Operation principle................263 Technical data................. 264 Negative-sequence time overcurrent protection for machines NS2PTOC (46I2)..................
  • Page 15 Table of contents Logic diagram................279 Undervoltage protection............. 279 Technical data................. 280 Section 9 Voltage protection............. 281 Two step undervoltage protection UV2PTUV (27)........281 Identification..................281 Functionality..................281 Function block................. 281 Signals.....................282 Settings....................282 Monitored data.................283 Operation principle................283 Measurement principle............... 284 Time delay..................
  • Page 16 Table of contents Time delay.................. 297 Blocking..................297 Design..................297 Technical data................. 299 Overexcitation protection OEXPVPH (24)..........299 Identification..................299 Functionality..................299 Function block................. 300 Signals.....................300 Settings....................300 Monitored data.................301 Operation principle................301 Measured voltage............... 304 Operate time of the overexcitation protection......304 Cooling..................
  • Page 17 Table of contents Time delay.................. 322 Blocking..................322 Design..................322 Technical data................. 322 Overfrequency protection SAPTOF (81)..........323 Identification..................323 Functionality..................323 Function block................. 324 Signals.....................324 Settings....................324 Monitored data.................324 Operation principle................325 Measurement principle............... 325 Time delay.................. 326 Blocking..................326 Design..................326 Technical data.................
  • Page 18 Table of contents Dead line detection..............338 Main logic................... 338 Technical data................. 342 Breaker close/trip circuit monitoring TCSSCBR........342 Identification..................342 Functionality..................342 Function block................. 343 Signals.....................343 Settings....................343 Operation principle................343 Technical data................. 344 Section 12 Control................345 Synchronism check, energizing check, and synchronizing SESRSYN (25)..................
  • Page 19 Table of contents Circuit breaker SXCBR..............364 Signals..................364 Settings..................365 Circuit switch SXSWI............... 366 Signals..................366 Settings..................367 Bay control QCBAY................. 367 Identification ................367 Functionality................367 Function block................367 Signals..................368 Settings..................368 Local remote LOCREM..............368 Identification ................368 Functionality................368 Function block................369 Signals..................369 Settings..................369 Local remote control LOCREMCTRL..........
  • Page 20 Table of contents Signals..................381 Settings..................382 Interlocking for busbar grounding switch BB_ES (3)....... 382 Identification................382 Functionality................382 Function block................382 Logic diagram................383 Signals..................383 Settings..................383 Interlocking for bus-section breaker A1A2_BS (3)......383 Identification................384 Functionality................384 Function block................385 Logic diagram................386 Signals..................387 Settings..................389 Interlocking for bus-section disconnector A1A2_DC (3)....
  • Page 21 Table of contents Function block................416 Logic diagrams................418 Signals..................421 Settings..................425 Interlocking for line bay ABC_LINE (3)..........425 Identification................425 Functionality................425 Function block................427 Logic diagram................428 Signals..................433 Settings..................436 Interlocking for transformer bay AB_TRAFO (3)......436 Identification................436 Functionality................436 Function block................
  • Page 22 Table of contents Settings....................452 Operation principle................452 IEC 61850 generic communication I/O functions DPGGIO....453 Identification..................453 Functionality..................453 Function block................. 454 Signals.....................454 Settings....................454 Operation principle................454 Single point generic control 8 signals SPC8GGIO....... 455 Identification..................455 Functionality..................455 Function block................. 455 Signals.....................455 Settings....................456 Operation principle................
  • Page 23 Table of contents Function block................. 464 Signals.....................465 Settings....................465 IED commands with position and select for IEC 60870-5-103 I103POSCMD..................465 Functionality..................465 Function block................. 466 Signals.....................466 Settings....................466 Section 13 Logic..................467 Tripping logic common 3-phase output SMPPTRC (94).......467 Identification..................467 Functionality..................467 Function block.................
  • Page 24 Table of contents Fixed signals FXDSIGN................488 Identification..................488 Functionality..................488 Function block................. 488 Signals.....................488 Settings....................489 Operation principle................489 Boolean 16 to integer conversion B16I..........489 Identification..................489 Functionality..................489 Function block................. 490 Signals.....................490 Settings....................491 Monitored data.................491 Operation principle................491 Boolean 16 to integer conversion with logic node representation B16IFCVI....................
  • Page 25 Table of contents Elapsed time integrator with limit transgression and overflow supervision TEIGGIO................501 Identification..................501 Functionality..................502 Function block................. 502 Signals.....................502 Settings....................503 Operation principle................503 Operation Accuracy..............505 Memory storage................505 Technical data................. 505 Section 14 Monitoring................507 Measurements..................507 Functionality..................507 Measurements CVMMXN..............
  • Page 26 Table of contents Identification ................522 Function block................522 Signals..................522 Settings..................523 Monitored data................524 Phase-neutral voltage measurement VNMMXU......525 Identification ................525 Function block................525 Signals..................525 Settings..................526 Monitored data................527 Operation principle................527 Measurement supervision............527 Measurements CVMMXN............531 Phase current measurement CMMXU........536 Phase-phase and phase-neutral voltage measurements VMMXU, VNMMXU..............
  • Page 27 Table of contents Disturbance report................545 Functionality..................545 Disturbance report DRPRDRE............546 Identification................546 Function block................546 Signals..................546 Settings..................546 Monitored data................547 Analog input signals AxRADR............551 Identification................551 Function block................551 Signals..................551 Settings..................552 Analog input signals A4RADR............556 Identification................556 Function block................556 Signals..................557 Settings..................557 Binary input signals BxRBDR............
  • Page 28 Table of contents Signals.....................576 Input signals................576 Operation principle................576 Technical data................. 577 Event recorder ..................577 Functionality..................577 Function block................. 578 Signals.....................578 Input signals................578 Operation principle................578 Technical data................. 579 Sequential of events................579 Functionality..................579 Function block................. 579 Signals.....................579 Input signals................
  • Page 29 Table of contents IEC 61850 generic communication I/O functions 16 inputs SP16GGIO586 Identification..................586 Functionality..................586 Function block................. 587 Signals.....................587 Settings....................588 MonitoredData................. 588 Operation principle................589 IEC 61850 generic communication I/O functions MVGGIO....589 Identification..................589 Functionality..................589 Function block................. 589 Signals.....................589 Settings....................590 Monitored data.................591...
  • Page 30 Table of contents Technical data................. 599 Insulation liquid monitoring function SSIML (71)........599 Identification..................599 Functionality..................599 Function block................. 600 Signals.....................600 Settings....................601 Operation principle................601 Technical data................. 602 Circuit breaker condition monitoring SSCBR........602 Identification..................602 Functionality..................602 Function block................. 603 Signals.....................603 Settings....................604 Monitored data.................605...
  • Page 31 Table of contents Signals.....................621 Settings....................621 Function status ground-fault for IEC 60870-5-103 I103EF....621 Functionality..................621 Function block................. 622 Signals.....................622 Settings....................622 Function status fault protection for IEC 60870-5-103 I103FLTPROT...622 Functionality..................622 Function block................. 623 Signals.....................623 Settings....................624 IED status for IEC 60870-5-103 I103IED..........625 Functionality..................
  • Page 32 Table of contents Functionality..................633 Function block................. 633 Signals.....................634 Settings....................635 Monitored data.................636 Operation principle................636 Technical data................. 637 Section 16 Station communication............639 DNP3 protocol..................639 IEC 61850-8-1 communication protocol ..........639 Identification..................639 Functionality..................639 Communication interfaces and protocols........640 Settings....................641 Technical data.................
  • Page 33 Table of contents Settings....................650 Operation principle ................. 650 GOOSE function block to receive a measurand value GOOSEMVRCV651 Identification..................651 Functionality..................651 Function block................. 651 Signals.....................651 Settings....................652 Operation principle ................. 652 GOOSE function block to receive a single point value GOOSESPRCV652 Identification..................
  • Page 34 Table of contents Signals..................662 Settings..................662 Internal event list SELFSUPEVLST..........662 Identification................662 Settings..................662 Operation principle................662 Internal signals................665 Run-time model................666 Technical data................. 667 Time synchronization................668 Functionality..................668 Time synchronization TIMESYNCHGEN.........668 Identification................668 Settings..................668 Time synchronization via SNTP............668 Identification................668 Settings..................669 Time system, summer time begin DSTBEGIN........
  • Page 35 Table of contents Identification................677 Function block................677 Signals..................678 Settings..................678 Operation principle................678 Test mode functionality TESTMODE............679 Identification..................679 Functionality..................680 Function block................. 680 Signals.....................680 Settings....................681 Operation principle................681 Change lock function CHNGLCK ............682 Identification..................682 Functionality..................682 Function block................. 683 Signals.....................683 Settings....................683 Operation principle................
  • Page 36 Table of contents Functionality..................695 Function block................. 695 Signals.....................695 Settings....................696 Operation principle................696 Global base values GBASVAL............. 696 Identification..................697 Functionality..................697 Settings....................697 Authority check ATHCHCK..............697 Identification..................697 Functionality..................698 Settings....................698 Operation principle................699 Authorization handling in the IED..........699 Authority management AUTHMAN............700 Identification..................
  • Page 37 Table of contents Function block................705 Signals..................706 Settings..................706 Monitored data................706 Operation principle................706 Section 18 IED physical connections..........709 Protective ground connections............. 709 Inputs....................710 Measuring inputs................710 Auxiliary supply voltage input............711 Binary inputs..................711 Outputs....................715 Outputs for tripping, controlling and signalling.........715 Outputs for signalling...............717 IRF....................719 Communication connections..............720...
  • Page 38 Table of contents Product safety..................732 EMC compliance...................732 Section 21 Time inverse characteristics..........733 Application.................... 733 Operation principle................736 Mode of operation................736 Inverse time characteristics..............739 Section 22 Glossary................763 Technical manual...
  • Page 39: Section 1 Introduction

    Section 1 1MRK 502 048-UUS A Introduction Section 1 Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 40: Product Documentation

    Section 1 1MRK 502 048-UUS A Introduction Product documentation 1.3.1 Product documentation set Engineering manual Installation manual Commissioning manual Operation manual Application manual Technical manual Communication protocol manual IEC07000220-3-en.vsd IEC07000220 V3 EN Figure 1: The intended use of manuals throughout the product lifecycle The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software.
  • Page 41: Document Revision History

    Section 1 1MRK 502 048-UUS A Introduction during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service.
  • Page 42: Symbols And Conventions

    Section 1 1MRK 502 048-UUS A Introduction Documents related to REG650 Identity number Type test certificate 1MRK 502 050-TUS Rotor Ground Fault Protection with Injection Unit RXTTE4 and REG670 1MRG001910 Application notes for Circuit Breaker Control 1MRG006806 650 series manuals Identity number Communication protocol manual, DNP 3.0 1MRK 511 280-UUS...
  • Page 43: Document Conventions

    Section 1 1MRK 502 048-UUS A Introduction The information icon alerts the reader of important facts and conditions. The tip icon indicates advice on, for example, how to design your project or how to use a certain function. Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death.
  • Page 45: Section 2 Available Functions

    Section 2 1MRK 502 048-UUS A Available functions Section 2 Available functions Main protection functions IEC 61850 or ANSI Function description Generator Function name Differential protection T3WPDIF Transformer differential protection, three winding 0–1 REFPDIF Restricted earth fault protection, low impedance 0–1 HZPDIF 1Ph High impedance differential protection...
  • Page 46: Control And Monitoring Functions

    Section 2 1MRK 502 048-UUS A Available functions IEC 61850 or ANSI Function description Generator Function name TRPTTR Thermal overload protection, two time constants 0–2 CCRBRF 50BF Breaker failure protection, 3–phase activation and output 0–1 CCRPLD 52PD Pole discordance protection 0–1 GUPPDUP Directional underpower protection...
  • Page 47 Section 2 1MRK 502 048-UUS A Available functions IEC 61850 or Function ANSI Function description Generator name DPGGIO IEC 61850 generic communication I/O functions double point SPC8GGIO Single point generic control 8 signals AUTOBITS AutomationBits, command function for DNP3.0 I103CMD Function commands for IEC60870-5-103 I103IEDCMD IED commands for IEC60870-5-103...
  • Page 48 Section 2 1MRK 502 048-UUS A Available functions IEC 61850 or Function ANSI Function description Generator name TCSSCBR Breaker close/trip circuit monitoring Logic SMPPTRC Tripping logic, common 3–phase output 1–6 TMAGGIO Trip matrix logic Configurable logic blocks INVERTER Configurable logic blocks PULSETIMER Configurable logic blocks GATE...
  • Page 49 Section 2 1MRK 502 048-UUS A Available functions IEC 61850 or Function ANSI Function description Generator name TEIGGIO Elapsed time integrator with limit transgression and overflow supervision Monitoring CVMMXN Measurements CMMXU Phase current measurement VMMXU Phase-phase voltage measurement CMSQI Current sequence component measurement VMSQI Voltage sequence measurement VNMMXU...
  • Page 50: Station Communication

    Section 2 1MRK 502 048-UUS A Available functions IEC 61850 or Function ANSI Function description Generator name I103AR Function status auto-recloser for IEC60870-5-103 I103EF Function status ground-fault for IEC60870-5-103 I103FLTPROT Function status fault protection for IEC60870-5-103 I103IED IED status for IEC60870-5-103 I103SUPERV Supervison status for IEC60870-5-103 I103USRDEF...
  • Page 51: Basic Ied Functions

    Section 2 1MRK 502 048-UUS A Available functions IEC 61850 or Function ANSI Function description Generator name MST4TCP DNP3.0 for TCP/IP communication protocol RS485GEN RS485 OPTICALPROT Operation selection for optical serial RS485PROT Operation selection for RS485 DNPFREC DNP3.0 fault records for TCP/IP communication protocol OPTICAL103 IEC60870-5-103 Optical serial communication RS485103...
  • Page 52 Section 2 1MRK 502 048-UUS A Available functions IEC 61850/Function Function description block name SNTP Time synchronization DTSBEGIN, DTSEND, Time synchronization, daylight saving TIMEZONE IRIG-B Time synchronization SETGRPS Setting group handling ACTVGRP Parameter setting groups TESTMODE Test mode functionality CHNGLCK Change lock function PRIMVAL Primary system values...
  • Page 53: Section 3 Analog Inputs

    Section 3 1MRK 502 048-UUS A Analog inputs Section 3 Analog inputs Introduction Analog input channels in the IED must be set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field ( primary and secondary connections ).
  • Page 54: Presumptions For Technical Data

    Section 3 1MRK 502 048-UUS A Analog inputs • Forward means the direction is into the object. • Reverse means the direction is out from the object. Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse...
  • Page 55: Settings

    Section 3 1MRK 502 048-UUS A Analog inputs have corresponding primary quantity, the 1:1 ratio shall be set for the used analogue inputs on the IED, For example, HZPDIF. • Parameter IBase used by the tested function is set equal to the rated CT primary current.
  • Page 56 Section 3 1MRK 502 048-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTprim2 1 - 99999 1000 Rated CT primary current CTStarPoint3 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000...
  • Page 57 Section 3 1MRK 502 048-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec4 0.1 - 10.0...
  • Page 58 Section 3 1MRK 502 048-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec4 0.1 - 10.0...
  • Page 59 Section 3 1MRK 502 048-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTprim4 1 - 99999 1000 Rated CT primary current VTsec5 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim5 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec6 0.001 - 999.999...
  • Page 60 Section 3 1MRK 502 048-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec6 0.1 - 10.0 Rated CT secondary current CTprim6 1 - 99999 1000 Rated CT primary current VTsec7 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim7 0.001 - 9999.999 0.001...
  • Page 61 Section 3 1MRK 502 048-UUS A Analog inputs Name Values (Range) Unit Step Default Description VTprim8 0.001 - 9999.999 0.001 Rated VT primary voltage VTsec9 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim9 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec10 0.001 - 999.999...
  • Page 63: Section 4 Binary Input And Output Modules

    Section 4 1MRK 502 048-UUS A Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
  • Page 64: Settings

    Section 4 1MRK 502 048-UUS A Binary input and output modules Each binary input has an oscillation count parameter OscillationCountx and an oscillation time parameter OscillationTimex, where x is the number of the binary input of the module in question. 4.1.3 Settings 4.1.3.1...
  • Page 65: Setting Parameters For Communication Module

    Section 4 1MRK 502 048-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description Threshold6 6 - 900 Threshold in percentage of station battery voltage for input 6 DebounceTime6 0.000 - 0.100 0.001 0.005 Debounce time for input 6 OscillationCount6 0 - 255 Oscillation count for input 6...
  • Page 66 Section 4 1MRK 502 048-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationTime2 0.000 - 600.000 0.001 0.000 Oscillation time for input 2 Threshold3 6 - 900 Threshold in percentage of station battery voltage for input 3 DebounceTime3 0.000 - 0.100 0.001...
  • Page 67 Section 4 1MRK 502 048-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationCount10 0 - 255 Oscillation count for input 10 OscillationTime10 0.000 - 600.000 0.001 0.000 Oscillation time for input 10 Threshold11 6 - 900 Threshold in percentage of station battery voltage for input 11 DebounceTime11...
  • Page 69: Section 5 Local Human-Machine-Interface Lhmi

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 12: SCREEN Non group settings (basic) Name Values (Range)
  • Page 70: Function Block

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI 5.2.2 Function block LHMICTRL CLRLEDS HMI-ON RED-S YELLOW-S YELLOW-F CLRPULSE LEDSCLRD IEC09000320-1-en.vsd IEC09000320 V1 EN Figure 3: LHMICTRL function block 5.2.3 Signals Table 13: LHMICTRL Input signals Name Type Default Description CLRLEDS BOOLEAN Input to reset the LCD-HMI LEDs...
  • Page 71: Basic Part For Led Indication Module

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Basic part for LED indication module 5.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Basic part for LED indication module LEDGEN Basic part for LED indication module GRP1_LED1 - GRP1_LED15 GRP2_LED1 -...
  • Page 72: Settings

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Table 16: GRP1_LED1 Input signals Name Type Default Description HM1L01R BOOLEAN Red indication of LED1, local HMI alarm group 1 HM1L01Y BOOLEAN Yellow indication of LED1, local HMI alarm group 1 HM1L01G BOOLEAN Green indication of LED1, local HMI alarm group 1...
  • Page 73: Lcd Part For Hmi Function Keys Control Module

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI LCD part for HMI function keys control module 5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number LCD part for HMI Function Keys Control FNKEYMD1 - module FNKEYMD5 5.4.2...
  • Page 74: Operation Principle

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Table 23: FNKEYTY1 Non group settings (basic) Name Values (Range) Unit Step Default Description Type Disabled Disabled Function key type Menu shortcut Control MenuShortcut Menu shortcut for function key Operation principle 5.5.1 Local HMI ANSI12000175 V1 EN...
  • Page 75 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI IEC13000063-1-en.vsd IEC13000063 V1 EN Figure 8: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
  • Page 76 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI IEC13000045-1-en.vsd IEC13000045 V1 EN Figure 9: Truncated path The number before the function instance, for example ETHFRNT:1, indicates the instance number. The function button panel shows on request what actions are possible with the function buttons.
  • Page 77: Leds

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI GUID-D20BB1F1-FDF7-49AD-9980-F91A38B2107D V1 EN Figure 11: Alarm LED panel The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display.
  • Page 78 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI The keypad also contains programmable push-buttons that can be configured either as menu shortcut or control buttons. ANSI11000247 V2 EN Figure 12: LHMI keypad with object control, navigation and command push buttons and RJ-45 communication port 1...5 Function button Close...
  • Page 79: Functionality

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI 5.5.2 5.5.2.1 Functionality The function blocks LEDGEN and GRP1_LEDx, GRP2_LEDx and GRP3_LEDx (x=1-15) controls and supplies information about the status of the indication LEDs. The input and output signals of the function blocks are configured with PCM600. The input signal for each LED is selected individually using SMT or ACT.
  • Page 80 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI and a restart at a new disturbance. A disturbance is defined to end a settable time after the reset of the activated input signals or when the maximum time limit has elapsed. Acknowledgment/reset •...
  • Page 81 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI In the sequence diagrams the LEDs have the following characteristics: = No indication = Steady light = Flash = Green = Red = Yellow IEC09000311.vsd IEC09000311 V1 EN Figure 13: Symbols used in the sequence diagrams Sequence 1 (Follow-S) This sequence follows all the time, with a steady light, the corresponding input signals.
  • Page 82 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Sequence 3 LatchedAck-F-S This sequence has a latched function and works in collecting mode. Every LED is independent of the other LEDs in its operation. At the activation of the input signal, the indication starts flashing.
  • Page 83 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according to Figure Activating...
  • Page 84 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI 3 and 4 is that indications that are still activated will not be affected by the reset that is, immediately after the positive edge of the reset has been executed a new reading and storing of active signals is performed.
  • Page 85 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI LEDs set for sequence 6 are completely independent in its operation of LEDs set for other sequences. Timing diagram for sequence 6 Figure 22 shows the timing diagram for two indications within one disturbance. Disturbance tRestart Activating...
  • Page 86 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Disturbance Disturbance tRestart tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000240_2_en.vsd IEC01000240 V2 EN Figure 23: Operating sequence 6 (LatchedReset-S), two different disturbances Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed.
  • Page 87 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000241_2_en.vsd IEC01000241 V2 EN Figure 24: Operating sequence 6 (LatchedReset-S), two indications within same disturbance but with reset of activating signal between Figure 25 shows the timing diagram for manual reset.
  • Page 88: Function Keys

    Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left of...
  • Page 89 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI FNKEYMD1 - FNKEYMD5 function block also has a number of settings and parameters that control the behavior of the function block. These settings and parameters are normally set using the PST. Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED.
  • Page 90 Section 5 1MRK 502 048-UUS A Local Human-Machine-Interface LHMI Input value Output value pulse pulse IEC09000332_1_en.vsd IEC09000332 V1 EN Figure 28: Sequence diagram for setting PULSED Input function All inputs work the same way: When the LHMI is configured so that a certain function button is of type CONTROL, then the corresponding input on this function block becomes active, and will light the yellow function button LED when high.
  • Page 91: Transformer Differential Protection

    Section 6 1MRK 502 048-UUS A Differential protection Section 6 Differential protection Transformer differential protection 6.1.1 Functionality Transformer differential protection, three-winding T3WPDIF (87T) is provided with internal CT ratio matching and phase shift compensation. In addition, zero sequence elimination is also provided. The function can be provided with -phase sets of current inputs.
  • Page 92: Transformer Differential Protection, Three Winding T3Wpdif (87T)

    Section 6 1MRK 502 048-UUS A Differential protection load tap changer as well as for shunt reactors including local feeders within the station. An adaptive stabilizing feature is included to avoid misoperations during for heavy through- faults. Harmonic restraint is included for inrush and overexcitation currents respectively, cross- blocking is also available.
  • Page 93: Function Block

    Section 6 1MRK 502 048-UUS A Differential protection 6.1.2.2 Function block T3WPDIF (87T) I3PW1CT1* TRIP I3PW2CT1* TRIPRES I3PW3CT1* TRIPUNRE BLOCK TRNSUNR TRNSSENS PICKUP PU_A PU_B PU_C BLK2H BLK5H BLKWAV IDALARM IDMAG_A IDMAG_B IDMAG_C IBIAS IDMAG_NS ANSI09000269-1-en.vsd ANSI09000269 V1 EN Figure 30: T3WPDIF (87T) function block 6.1.2.3 Signals...
  • Page 94: Settings

    Section 6 1MRK 502 048-UUS A Differential protection Name Type Description PU_B BOOLEAN Pickup signal from phase B PU_C BOOLEAN Pickup signal from phase C BLK2H BOOLEAN General second harmonic block signal BLK5H BOOLEAN General fifth harmonic block signal BLKWAV BOOLEAN General block signal from waveform criteria IDALARM...
  • Page 95 Section 6 1MRK 502 048-UUS A Differential protection Name Values (Range) Unit Step Default Description NegSeqROA 30.0 - 90.0 60.0 Operate angle for internal/external negative sequence fault discriminator SOTFMode Disabled Enabled Operation mode for switch onto fault function Enabled IDiffAlarm 0.05 - 1.00 0.01 0.20...
  • Page 96: Monitored Data

    Section 6 1MRK 502 048-UUS A Differential protection Name Values (Range) Unit Step Default Description ZSCurrSubtrW1 Disabled Enabled Enable zero sequence subtraction for W1 side, Enabled Off/On ZSCurrSubtrW2 Disabled Enabled Enable zero sequence subtraction for W2 side, Enabled Off/On ZSCurrSubtrW3 Disabled Enabled Enable zero sequence subtraction for W3 side,...
  • Page 97: Function Calculation Principles

    Section 6 1MRK 502 048-UUS A Differential protection en05000186_ansi.vsd ANSI05000186 V1 EN Figure 31: Typical CT location and definition of positive current direction Due to the ratio of the number of turns of the windings and the connection group of the protected transformer, the current between two windings can not be directly compared to each other.
  • Page 98: Fundamental Frequency Differential Currents

    Section 6 1MRK 502 048-UUS A Differential protection 6.1.3.2 Fundamental frequency differential currents The fundamental frequency differential current is a vectorial sum (sum of fundamental frequency phasors) of the individual phase currents from the different sides of the protected power transformer. Before any differential current can be calculated, the power transformer phase shift, and its transformation ratio, must be accounted for.
  • Page 99 Section 6 1MRK 502 048-UUS A Differential protection é ù é I A W _ _ 1 ù é ù é IL A W ù ê ú ê ú Vn W ê ú Vn W ê ú = × × × ×...
  • Page 100 Section 6 1MRK 502 048-UUS A Differential protection same may be represented as YN or yn depending on whether the winding is HV or LV. The Transformer phase shift such as Yd1, Dy11, YNautod5, Yy0d5 and so on, which introduce phase displacement between individual windings currents in multiples of 30°.
  • Page 101 Section 6 1MRK 502 048-UUS A Differential protection Table 29: Matrices for differential current calculation Matrix with Zero Sequence Matrix with Zero Sequence Reduction set to On Reduction set to Off Matrix for Reference Winding é ù é ù 1 0 0 ê...
  • Page 102 Section 6 1MRK 502 048-UUS A Differential protection Matrix with Zero Sequence Matrix with Zero Sequence Reduction set to On Reduction set to Off Matrix for winding with 120° é ù é ù 0 1 0 leading ê ú ê ú...
  • Page 103: Differential Current Alarm

    Section 6 1MRK 502 048-UUS A Differential protection where: ID_A is the fundamental frequency differential current in phase A (in W1 side primary amperes) ID_B is the fundamental frequency differential current in phase B (in W1 side primary amperes) ID_C is the fundamental frequency differential current in phase C (in W1 side primary amperes) I_A_W1 is the fundamental frequency phase current in phase A on the W1 side...
  • Page 104: Bias Current

    Section 6 1MRK 502 048-UUS A Differential protection 6.1.3.4 Bias current The bias current is calculated as the highest current amongst all individual winding current contributions, compensated for eventual power transformer phase shift and transferred to the power transformer reference side. All individual winding current contributions are already referred to the power transformer winding one side (power transformer HV winding) and therefore they can be compared regarding their magnitudes.
  • Page 105: Restrained And Unrestrained Limits Of The Differential Protection

    Section 6 1MRK 502 048-UUS A Differential protection Removing the zero sequence current from the differential currents decreases to some extent the sensitivity of the differential protection for internal ground-faults. In order to counteract this effect to some degree, the zero sequence current is subtracted not only from the three fundamental frequency differential currents, but from the bias current as well.
  • Page 106 Section 6 1MRK 502 048-UUS A Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en05000187-2.vsd IEC05000187 V2 EN Figure 32: Description of the restrained, and the unrestrained operate characteristics...
  • Page 107 Section 6 1MRK 502 048-UUS A Differential protection typical reason for existence of the false differential currents in this section. The slope in section 1 is always zero percent. Section 2: In section 2, a certain minor slope is introduced which is supposed to cope with false differential currents due to higher than normal currents through the current transformers, such as during a transformer overloading situation.
  • Page 108 Section 6 1MRK 502 048-UUS A Differential protection é ù é ù é ù é ù é ù IDNS INS W 1 0 1 INS W ê ú ê ú ê ú ê ú Vn W ê ú × - ×...
  • Page 109 Section 6 1MRK 502 048-UUS A Differential protection As marked in equation 23, the first term on the right hand side of the equation, represents the total contribution of the negative sequence current from the W1 side compensated for eventual power transformer phase shift. The second term on the right hand side of the equation, represents the total contribution of the negative sequence current from the W2 side compensated for eventual power transformer phase shift and transferred to the power transformer W1 side.
  • Page 110 Section 6 1MRK 502 048-UUS A Differential protection equation 23. It performs a directional comparison between these two phasors. Taking into account the phase rotation transformation the relative phase displacement between the two negative sequence current phasors is calculated. In case of three-winding power transformers, a little more complex algorithm is applied, with two directional tests.
  • Page 111 Section 6 1MRK 502 048-UUS A Differential protection comparison is made in order to avoid the possibility to produce a wrong decision. The setting NegSeqROA represents the Relay Operate Angle, which determines the boundary between the internal and external fault regions. It can be selected in a range from ±30 degrees to ±90 degrees, with a step of 0.1 degree.
  • Page 112 Section 6 1MRK 502 048-UUS A Differential protection "steady state" for HV side neg. seq. phasor 0.1 kA 0.2 kA 0.3 kA 0.4 kA "steady state" for LV side neg. seq. phasor Contribution to neg. seq. differential current from HV side Contribution to neg.
  • Page 113: Unrestrained, And Sensitive Negative Sequence Protections

    Section 6 1MRK 502 048-UUS A Differential protection Dire ctiona l Compa ris on Crite rion: Inte rna l fa ult a s s e e n from the HV s ide e xcurs ion from 0 de gre e s due to CT 35 ms s a tura tion...
  • Page 114 Section 6 1MRK 502 048-UUS A Differential protection on the operate - restrain characteristic. So, this protection is not independent of the traditional restrained differential protection - it is activated after the first start signal has been placed. If the fault is positively recognized as internal, then the unrestrained negative sequence differential protection places its own trip request.
  • Page 115: Instantaneous Differential Currents

    Section 6 1MRK 502 048-UUS A Differential protection 6.1.3.10 Instantaneous differential currents The instantaneous differential currents are calculated from the instantaneous values of the input currents in order to perform the harmonic analysis and waveform analysis upon each one of them (see section "Harmonic and waveform block criteria"...
  • Page 116: Switch Onto Fault Feature

    Section 6 1MRK 502 048-UUS A Differential protection 400kV Currents Time [cycles] en05000343_ansi.vsd ANSI05000343 V1 EN Figure 36: Inrush currents to a transformer as seen by a protection IED. Typical is a high amount of the 2 harmonic, and intervals of low current, and low rate-of-change of current within each period.
  • Page 117: Logic Diagram

    Section 6 1MRK 502 048-UUS A Differential protection example, a forgotten grounding on the transformer LV side. The feature is based on the waveform check. If a severe internal fault exists, then, during energization the magnetic density in the iron core will be low and high sinusoidal currents will flow from the very beginning.
  • Page 118 Section 6 1MRK 502 048-UUS A Differential protection Differential function Trafo Data ID_A Instantaneous (sample based) Differential current, phase A ID_B Instantaneous (sample based) Differential current, phase B ID_C Instantaneous (sample based) Differential current, phase C IDMAG_NS Negative sequence diff current &...
  • Page 119 Section 6 1MRK 502 048-UUS A Differential protection Instantaneous values of currents (samples) from the HV, and LV sides for two- winding power transformers, and from the HV, the first LV, and the second LV side for three-winding power transformers. Currents from all power transformer sides expressed as fundamental frequency phasors with their real and imaginary parts.
  • Page 120 Section 6 1MRK 502 048-UUS A Differential protection BLKUNRES IdUnre TRIPUNRE_A b>a IDMAG_A IBIAS PU_A BLOCK BLKRES TRIPRES_A BLK2H_A Harmonic BLK5H_A Harmonic BLKWAV_A Wave block Cross Block Cross Block to B or C phases from B or C phases CrossBlockEn=Enabled ANSI05000168_2_en.vsd ANSI05000168 V2 EN Figure 38:...
  • Page 121 Section 6 1MRK 502 048-UUS A Differential protection Internal/ EXTFAULT Neg.Seq. Diff External INTFAULT Current Fault discrimin Contributions ator TRNSSENS OpNegSeqDiff=On IBIAS b>a Constant BLKNSSEN BLKNSUNR BLOCK PU_A PU_B PU_C en05000167_ansi.vsd ANSI05000167 V1 EN Figure 39: Transformer differential protection simplified logic diagram for internal/ external fault discriminator TRIPRES_A TRIPRES_B...
  • Page 122 Section 6 1MRK 502 048-UUS A Differential protection PU_A PU_B PICKUP PU_C BLK2H_A BLK2H_B BLK2H BLK2H_C BLK5H_A BLK5H_B BLK5H BLK5H_C BLKWAV_A BLKWAV_B BLKWAV BLKWAV_C en05000279_ansi.vsd ANSI05000279 V1 EN Figure 41: Transformer differential protection internal grouping of logical signals Logic in figures 38, 39, can be summarized as follows: The three fundamental frequency differential currents are applied in a phase segregated manner to two limits.
  • Page 123: Technical Data

    Section 6 1MRK 502 048-UUS A Differential protection sequence differential protection TRNSSENS and common trip TRIP are issued. This feature is called the sensitive negative sequence differential protection. If a pickup signal is issued in a phase (see signal PU_A), even if the fault has been classified as an external fault, then the instantaneous differential current of that phase (see signal ID_A) is analyzed for the 2 and the 5...
  • Page 124: Restricted Earth-Fault Protection, Low Impedance Refpdif (87N)

    Section 6 1MRK 502 048-UUS A Differential protection Function Range or value Accuracy IBase Base sensitivity function (0.05 - 0.60) x ± 1.0% of In Minimum negative sequence current (0.02 - 0.20) x IBase ± 1.0% of In Operate angle, negative sequence (30.0 - 90.0) degrees ±...
  • Page 125: Function Block

    Section 6 1MRK 502 048-UUS A Differential protection high sensitivity and high speed tripping as it protects each winding separately and thus does not need inrush stabilization. The low-impedance function is a percentage biased function with an additional zero sequence current directional comparison criterion. This gives excellent sensitivity and stability during through faults.
  • Page 126: Settings

    Section 6 1MRK 502 048-UUS A Differential protection Signal Description Magnitude of fundamental frequency neutral current IBIAS Magnitude of the bias current IDIFF Magnitude of fundamental frequency differential current ANGLE Direction angle from zero sequence feature I2RATIO Second harmonic ratio 6.2.5 Settings Table 33:...
  • Page 127: Operation Principle

    Section 6 1MRK 502 048-UUS A Differential protection Name Type Values (Range) Unit Description IDIFF REAL Magnitude of fundamental frequency differential current ANGLE REAL Direction angle from zero sequence feature 2NDHARM REAL Second harmonic ratio 6.2.7 Operation principle 6.2.7.1 Fundamental principles of the restricted ground fault protection Restricted fault protection, low impedance function (REFPDIF, 87N) detects ground faults on grounded power transformer windings, most often an grounded wye winding.
  • Page 128 Section 6 1MRK 502 048-UUS A Differential protection ROA (Relay Operate Angle) ROA = 60 deg REFPDIF never operates for any faults external to the protected zone. Currents 3I and I are theoretically out of phase for any external ground-fault. ANSI05000724 V3 EN Figure 44: Zero sequence currents at an external ground fault...
  • Page 129 IED as 180 degrees out-of- phase if the current transformers are connected as in figure 44, which is the ABB recommended connection. The differential current becomes zero as both CTs ideally measure exactly the same component of the ground fault current.
  • Page 130 Section 6 1MRK 502 048-UUS A Differential protection 6.2.7.2 Operate and restrain characteristic Restricted earth-fault protection, low impedance (REFPDIF, 87N) is a winding protection of the differential type, whose settings are independent of any other protection. Compared to the transformer differential protection it has some advantages. It is less complicated as no current phase correction and magnitude correction are needed, not even in the case of an On-Load Tap-Changer (OLTC).
  • Page 131: Calculation Of Differential Current And Bias Current

    Section 6 1MRK 502 048-UUS A Differential protection Zero- sequence diff. current in per unit Characteristic if IdMin = 1.0 pu operate slope = ----------------* 100 % restrain Operate conditionally IdMin range: 0.04 –1.00 IBase Slope 100% Reset Ratio in all sections: Section 3 0.95 (a constant) Section 1...
  • Page 132: Detection Of External Ground Faults

    Section 6 1MRK 502 048-UUS A Differential protection The bias current is the highest current of all separate input currents to REFPDIF (87N), that is, of current in phase A, phase B, phase C, and the current in the neutral point (designated as IN in figure and in figure 45).
  • Page 133: Algorithm Of The Restricted Ground Fault Protection

    Section 6 1MRK 502 048-UUS A Differential protection Directional criterion The directional criterion is applied in order to positively distinguish between internal and external ground faults. This check is an additional criterion, which should prevent malfunctions at heavy external ground faults, and during the disconnection of such faults by other protections.
  • Page 134: Technical Data

    Section 6 1MRK 502 048-UUS A Differential protection For as long as the external fault persists an additional temporary trip condition is introduced. That means that REFPDIF (87N) is temporarily desensitized. If point P (Ibias, Idiff) is found to be above the operate - restrain characteristic), a directional check can be made.
  • Page 135: Ph High Impedance Differential Protection Hzpdif (87)

    Section 6 1MRK 502 048-UUS A Differential protection 1Ph High impedance differential protection HZPDIF (87) 6.3.1 Identification IEC 61850 IEC 60617 ANSI/IEEE C37.2 Function description identification identification device number 1Ph High impedance differential HZPDIF protection SYMBOL-CC V2 EN 6.3.2 Introduction The 1Ph High impedance differential protection HZPDIF (87) functions can be used when the involved CTs have the same turns ratio and similar magnetizing characteristics.
  • Page 136: Settings

    Section 6 1MRK 502 048-UUS A Differential protection Table 40: HZPDIF (87) Output signals Name Type Description TRIP BOOLEAN Trip signal ALARM BOOLEAN Alarm signal MEASVOLT REAL Measured RMS voltage on CT secondary side 6.3.5 Settings Table 41: HZPDIF (87) Group settings (basic) Name Values (Range) Unit...
  • Page 137: Technical Data

    Section 6 1MRK 502 048-UUS A Differential protection additional lower alarm level. By activating inputs, the HZPDIF (87) function can either be blocked completely, or only the trip output. AlarmPickup 0-tAlarm AlarmPickup 0.03s en05000301_ansi.vsd ANSI05000301 V1 EN Figure 48: Logic diagram for 1Ph High impedance differential protection HZPDIF (87) 6.3.8 Technical data...
  • Page 138: Identification

    Section 6 1MRK 502 048-UUS A Differential protection 6.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Generator differential protection GENPDIF > SYMBOL-NN V1 EN 6.4.2 Functionality Short circuit between the phases of the stator windings causes normally very large fault currents.
  • Page 139: Function Block

    Section 6 1MRK 502 048-UUS A Differential protection Adaptive frequency tracking is included to ensure proper operation of the generator differential protection during varying frequency conditions. An open CT circuit condition creates unexpected operations for Generator differential protection under the normal load conditions. It is also possible to damage secondary equipment due to high voltage produced from open CT circuit outputs.
  • Page 140: Settings

    Section 6 1MRK 502 048-UUS A Differential protection Name Type Default Description BLKNSUNR BOOLEAN Block of trip for unrestrained negative sequence differential protection BLKNSSEN BOOLEAN Block of trip for sensitive negative sequence differential protection DESENSIT BOOLEAN Raise pick up: function temporarily desensitized Table 45: GENPDIF (87G) Output signals Name...
  • Page 141: Operation Principle

    Section 6 1MRK 502 048-UUS A Differential protection Table 47: GENPDIF (87G) Group settings (advanced) Name Values (Range) Unit Step Default Description EndSection1 0.20 - 1.50 0.01 1.25 End of section 1, multiple of generator rated current EndSection2 1.00 - 10.00 0.01 3.00 End of section 2, multiple of generator rated...
  • Page 142 Section 6 1MRK 502 048-UUS A Differential protection IEC06000430-2-en.vsd IEC06000430 V2 EN Figure 50: Position of current transformers; the recommended (default) orientation If the fault is internal, the faulty generator must be quickly tripped, that is, disconnected from the network, the field breaker tripped and the agent to the prime mover interrupted. GENPDIF (87G) function always uses reference (default) directions of CTs towards the protected generator as shown in figure 50.
  • Page 143: Function Calculation Principles

    Section 6 1MRK 502 048-UUS A Differential protection 6.4.6.1 Function calculation principles To make a differential protection as sensitive and stable as possible, the restrained differential characteristic is used. The protection must be provided with a proportional bias, which makes the protection operate for a certain percentage differential current related to the current through the generator stator winding.
  • Page 144 Section 6 1MRK 502 048-UUS A Differential protection Idiff ANSI0700018_3_en.vsd ANSI07000018 V3 EN Figure 51: Internal fault External fault: IAn = - IAt Idiff = 0 en07000019-2_ansi.vsd ANSI07000019 V2 EN Figure 52: External fault Generator differential protection GENPDIF (87G) function uses two mutually independent characteristics to which magnitudes of the three fundamental frequency RMS differential currents are compared at each execution of the differential protection function.
  • Page 145 Section 6 1MRK 502 048-UUS A Differential protection current – restrain current plane into two regions: the operate (trip) region and the restrain (block) region, as shown in figure 54. Two kinds of protection are obtained: • the non-stabilized (instantaneous unrestrained) differential protection •...
  • Page 146 Section 6 1MRK 502 048-UUS A Differential protection currents in this section can be tolerances of the current transformers used on both sides of the protected generator. Slope in section 1 is always zero percent. Normally, with the protected machine at rated load, the restrain, bias current will be around 1 p.u., that is, equal to the machine rated current.
  • Page 147 Section 6 1MRK 502 048-UUS A Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 TempIdMin IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en06000637.vsd IEC06000637 V2 EN Figure 54: Operate-restrain characteristic GENPDIF (87G) can also be temporarily ‘desensitized’...
  • Page 148: Supplementary Criteria

    Section 6 1MRK 502 048-UUS A Differential protection 6.4.6.3 Supplementary criteria To relieve the burden of constructing an exact optimal operate-restrain characteristic, two special features supplement the basic stabilized differential protection function, making Generator differential protection GENPDIF (87G) a very reliable one. The supplementary criteria are: •...
  • Page 149 Section 6 1MRK 502 048-UUS A Differential protection • If the two negative sequence currents, as seen by the differential relay, flow in the same direction (that is with the CTs oriented as in figure 50), the fault is internal. If the two negative sequence currents flow in opposite directions, the fault is external.
  • Page 150 Section 6 1MRK 502 048-UUS A Differential protection 90 deg 120 deg NegSeqROA Angle could not be (Relay Operate Angle) measured. One or both currents too small Internal fault region 180 deg 0 deg IminNegSeq External fault region Internal / external fault boundary.
  • Page 151: Harmonic Restrain

    Section 6 1MRK 502 048-UUS A Differential protection current exceeds 1.5 times the rated current of the protected generator. Operation of this protection is signaled on the output of the function as TRNSENS. 6.4.6.4 Harmonic restrain Harmonic restrain is the classical restrain method traditionally used with power transformer differential protections.
  • Page 152: Simplified Block Diagrams

    Section 6 1MRK 502 048-UUS A Differential protection 6.4.6.6 Simplified block diagrams The principle design of the generator differential protection is shown in figure 56. TRIP Signals Pickup Phasors IAN, IBN,ICN Magnitude phase Idiff and Ibias selective Calculation Diff.prot. Idiff and Ibias characteristic Phasors IAT, IBT,ICT PICKUP...
  • Page 153 Section 6 1MRK 502 048-UUS A Differential protection BLKUNRES IdUnre TRIPUNRE_A b>a IDMAG_A IBIAS PU_A BLOCK BLKRES TRIPRES_A 2nd and Harmonic Cross Block To B or C Cross Block from B or C OpCrossBlock=Yes ANSI07000020-3-en.vsd ANSI07000020 V3 EN Figure 57: Generator differential logic diagram 1.
  • Page 154: Technical Data

    Section 6 1MRK 502 048-UUS A Differential protection PU_A PICKUP PU_B PU_C BLKH_A BLKH BLKH_B BLKH_C en07000022_ansi.vsd ANSI07000022 V1 EN Figure 59: Generator differential logic diagram 3. TRIPRES_A TRIPRES TRIPRES_B TRIPRES_C TRIPUNRE_A TRIPUNRE_B TRIPUNRE TRIPUNRE_C TRIP TRNSSENS TRNSUNR en07000023_ansi.vsd ANSI07000023 V1 EN Figure 60: Generator differential logic diagram 4.
  • Page 155 Section 6 1MRK 502 048-UUS A Differential protection Function Range or value Accuracy Operate time, unrestrained function 20 ms typically at 0 to 5 x set level Reset time, unrestrained function 40 ms typically at 5 to 0 x set level Operate time, negative sequence 15 ms typically at 0 to 5 unrestrained function...
  • Page 157: Power Swing Detection Zmrpsb (68)

    Section 7 1MRK 502 048-UUS A Impedance protection Section 7 Impedance protection Power swing detection ZMRPSB (68) 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Power swing detection ZMRPSB Zpsb SYMBOL-EE V1 EN 7.1.2 Functionality Power swings may occur after disconnection of heavy loads, upon severe fault clearing or after tripping of big generation plants.
  • Page 158: Signals

    Section 7 1MRK 502 048-UUS A Impedance protection 7.1.4 Signals Table 50: ZMRPSB (68) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKI01 BOOLEAN...
  • Page 159: Operation Principle

    Section 7 1MRK 502 048-UUS A Impedance protection Name Values (Range) Unit Step Default Description kLdRFw 0.50 - 0.90 Mult 0.01 0.75 Multiplication factor for inner resistive load boundary, forward kLdRRv 0.50 - 0.90 Mult 0.01 0.75 Multiplication factor for inner resistive load boundary, reverse IMinOpPE 5 - 30...
  • Page 160 Section 7 1MRK 502 048-UUS A Impedance protection R1LIn X1OutFw X1InFw R1FInRv R1FInFw LdAngle LdAngle RLdInRv RLdInFw RLdOutFw RLdOutRv X1InRv X1OutRv ANSI05000175-2-en.vsd ANSI05000175 V2 EN Figure 62: Operating characteristic for ZMRPSB (68) function (setting parameters in italic) The impedance measurement within ZMRPSB (68) function is performed by solving equation and equation (Typical equations are for phase A, similar equations are...
  • Page 161: Resistive Reach In Forward Direction

    Section 7 1MRK 502 048-UUS A Impedance protection 7.1.6.1 Resistive reach in forward direction To avoid load encroachment, the resistive reach is limited in forward direction by setting the parameter RLdOutFw which is the outer resistive load boundary value while the inner resistive boundary is calculated according to equation 36.
  • Page 162: Reactive Reach In Forward And Reverse Direction

    Section 7 1MRK 502 048-UUS A Impedance protection From the setting parameter RLdOutRv and the calculated value RLdInRv, a distance between the inner and outer boundary, DRv, is calculated. This value is valid for R direction in second and third quadrant and for X direction in third and fourth quadrant. The inner resistive characteristic in the second quadrant outside the load encroachment part corresponds to the setting parameter R1FInRv for the inner boundary.
  • Page 163 Section 7 1MRK 502 048-UUS A Impedance protection The tP1 timer in figure serve as detection of initial power swings, which are usually not as fast as the later swings are. The tP2 timer become activated for the detection of the consecutive swings, if the measured impedance exit the operate area and returns within the time delay, set on the tW waiting timer.
  • Page 164: Operating And Inhibit Conditions

    Section 7 1MRK 502 048-UUS A Impedance protection ZOUT_A ZOUT ZOUT_B ZIN_A ZOUT_C ZIN_B ZIN_C I0CHECK 10 ms BLK_I0 INHIBIT -loop 0-tR2 BLK_SS BLOCK -loop DET 1of3 - int DET 2of3 - int 0-tH EXT_PSD PICKUP ANSI09000223-3-en.vsd ANSI09000223 V3 EN Figure 64: Simplified block diagram for ZMRPSB (68) function 7.1.6.5...
  • Page 165: Technical Data

    Section 7 1MRK 502 048-UUS A Impedance protection is longer than the time delay set on tR2 timer. It is possible to disable this condition by connecting the logical 1 signal to the BLK_SS functional input. • The INHIBIT internal signal is activated after the time delay, set on tR1 timer, if an ground-fault appears during the power swing (input IOCHECK is high) and the power swing has been detected before the ground-fault (activation of the signal I0CHECK).
  • Page 166: Function Block

    Section 7 1MRK 502 048-UUS A Impedance protection All three zones can be individually definite time delayed. A load encroachment characteristic is available for the third zone as shown in figure 65. Operation area Operation area Operation area No operation area No operation area IEC07000117-2-en.vsd IEC07000117 V2 EN...
  • Page 167: Signals

    Section 7 1MRK 502 048-UUS A Impedance protection 7.2.4 Signals Table 56: ZGCPDIS (21G) Input signals Name Type Default Description GROUP Three phase group signal for current SIGNAL GROUP Three phase group signal for voltage SIGNAL BLOCK BOOLEAN Block of function BLKZ BOOLEAN Block due to Fuse Fail...
  • Page 168: Operation Principle

    Section 7 1MRK 502 048-UUS A Impedance protection Name Values (Range) Unit Step Default Description Z2Rev 0.005 - 3000.000 ohm/p 0.001 30.000 Reverse reach setting for Zone 2 0.000 - 60.000 0.001 0.500 Time delay to operate for Zone 2 OpModeZ3 Disable-Zone Disable-Zone...
  • Page 169: Basic Operation Characteristics

    Section 7 1MRK 502 048-UUS A Impedance protection Mho, zone3 Mho, zone2 Mho, zone1 IEC09000172_1_en.vsd IEC09000172 V1 EN Figure 67: Mho, offset mho characteristic Zone 3 can be equipped with a load encroachment function which cuts off a section of the characteristic when enabled.
  • Page 170 Section 7 1MRK 502 048-UUS A Impedance protection ImpedanceAng IEC10000176-2-en.vsd IEC10000176 V2 EN Figure 68: Mho, offset mho characteristic for Zone 1 with setting parameters Z1Fwd, Z1Rev and ImpedanceAng The three impedance zones can be time delayed individually by setting the parameter tZx (where x is 1-3 depending on selected zone).
  • Page 171: Theory Of Operation

    Section 7 1MRK 502 048-UUS A Impedance protection 7.2.6.4 Theory of operation The mho algorithm is based on the phase comparison of a operating phasor and a polarizing phasor. When the operating phasor leads the polarizing phasor by more than 90 degrees, the function operates and gives a trip output.
  • Page 172: Technical Data

    Section 7 1MRK 502 048-UUS A Impedance protection AB· × ZxFwd Vcomp × ZxFwd ß × ZxRev Vcomp AB· × ZxRev ANSI09000174_2_en.vsd ANSI09000174 V2 EN Figure 69: Simplified offset mho characteristic and voltage vectors for phase A-to-B fault. Operation occurs if 90≤β≤270. 7.2.7 Technical data Table 61:...
  • Page 173: Loss Of Excitation Lexpdis (40)

    Section 7 1MRK 502 048-UUS A Impedance protection Loss of excitation LEXPDIS (40) 7.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Loss of excitation LEXPDIS < SYMBOL-MM V1 EN 7.3.2 Functionality There are limits for the low excitation of a synchronous machine. A reduction of the excitation current weakens the coupling between the rotor and the stator.
  • Page 174: Signals

    Section 7 1MRK 502 048-UUS A Impedance protection 7.3.4 Signals Table 62: LEXPDIS (40) Input signals Name Type Default Description GROUP Current group connection SIGNAL GROUP Voltage group connection SIGNAL BLOCK BOOLEAN Block of function BLKTRZ1 BOOLEAN Block trip of zone Z1 BLKTRZ2 BOOLEAN Block trip of zone Z2...
  • Page 175: Monitored Data

    Section 7 1MRK 502 048-UUS A Impedance protection Name Values (Range) Unit Step Default Description OperationZ2 Disabled Enabled Operation Disable/Enable zone Z2 Enabled XoffsetZ2 -1000.00 - 1000.00 0.01 -10.00 Offset of Z2 circle top point along X axis in % of Zbase Z2diameter 0.01 - 3000.00...
  • Page 176: Operation Principle

    Section 7 1MRK 502 048-UUS A Impedance protection 7.3.7 Operation principle The Loss of excitation (LEXPDIS ,40) protection in the IED measures the apparent positive sequence impedance seen out from the generator. Measured mode Measured apparent impedance posseq posseq posseq (Equation 39) EQUATION2051-ANSI V1 EN There are three characteristics in LEXPDIS (40) protection as shown in figure 71.
  • Page 177 Section 7 1MRK 502 048-UUS A Impedance protection When the apparent impedance reaches the zone Z2 this zone will operate, normally with a longer delay. The zone is related to the static stability of the generator. LEXPDIS (40) protection also has a directional blinder (supervision). See figure 71. In LEXPDIS (40) function the zone measurement is done as shown in figure 72.
  • Page 178 Section 7 1MRK 502 048-UUS A Impedance protection Underexcitation Protection Restrain area XoffsetDirLine DirAngle Z (apparent impedance) en06000457.vsd IEC06000457 V1 EN Figure 73: Impedance constructed as XoffsetDirLine in LEXPDIS (40) protection LEXPDIS (40) function is schematically described in figure 74. Technical manual...
  • Page 179: Technical Data

    Section 7 1MRK 502 048-UUS A Impedance protection Positive pickupZ1 Z in TripZ1 sequence Z1 char. current phasor Positive Apparent pickupZ2 Z in TripZ2 sequence impedance Z2 char. voltage calculation phasor Dir. Restrain Dir.Restrain Enabled en06000458- 2_ansi.vsd ANSI06000458 V2 EN Figure 74: Simplified logic diagram of LEXPDIS (40) protection 7.3.8...
  • Page 180: Functionality

    Section 7 1MRK 502 048-UUS A Impedance protection 7.4.2 Functionality The out-of-step protection OOSPPAM (78) function in the IED can be used for both generator protection and as well for line protection applications. The main purpose of the OOSPPAM (78) function is to detect, evaluate, and take the required action during pole slipping occurrences in the power system.
  • Page 181: Settings

    Section 7 1MRK 502 048-UUS A Impedance protection Table 71: OOSPPAM (78) Output signals Name Type Description TRIP BOOLEAN Common trip, issued when either zone 1 or zone 2 trip TRIPZ1 BOOLEAN Zone 1 trip TRIPZ2 BOOLEAN Zone 2 trip START BOOLEAN Set when measured impedance enters lens...
  • Page 182: Monitored Data

    Section 7 1MRK 502 048-UUS A Impedance protection Table 74: OOSPPAM (78) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value Groups ForwardR 0.00 - 1000.00 % Zb 0.01 1.00...
  • Page 183: Operation Principle

    Section 7 1MRK 502 048-UUS A Impedance protection 7.4.7 Operation principle General Under balanced and stable conditions, a generator operates with a constant rotor angle (power angle), delivering active electrical power to the power system, which is approximately equal to the input mechanical power on the generator axis, minus the small losses in the generator.
  • Page 184 Section 7 1MRK 502 048-UUS A Impedance protection the right-hand side to the left-hand side, and the 1st pole-slip cannot be avoided. If the generator is not immediately disconnected, it then continues pole-slipping — see Figure 76, where two pole-slips (two pole-slip cycles) are shown. Under out-of-step conditions, the centre of oscillation is where the locus of the complex impedance Z(R, X) crosses the (impedance) line connecting the points SE (Sending End), and RE (Receiving End).
  • Page 185 Section 7 1MRK 502 048-UUS A Impedance protection |Z| in Ohms rotor (power) angle in rad normal angle load Z(R, X) under fault lies on the impedance line or near (for 3-ph faults) fault 500 ms fault occurrs Under 3-phase fault condition rotor angle of app.
  • Page 186: Lens Characteristic

    Section 7 1MRK 502 048-UUS A Impedance protection X [Ohm] Z(R,X) 20 ms fault relay after line out - - - - - - - - - - pre-fault - - - - - - - - - zone 2 - - - Z(R,X) - - -...
  • Page 187 Section 7 1MRK 502 048-UUS A Impedance protection Position of the OOS relay is the origin of - - - - - - - - - the R - X plane - - - - - - Zone 2 X-line determined Zline ®...
  • Page 188: Detecting An Out-Of-Step Condition

    Section 7 1MRK 502 048-UUS A Impedance protection Zgen(Rgen, Xgen), Ztr(Rtr, Xtr), Zline(Rline, Xline), Zeq(Req, Xeq), and the setting PickupAngle, for example 120 degrees. All impedances must be referred to the voltage level where the out-of-step protection relay is placed; in the case shown in Figure 80 relay is connected to the terminals of the generator and, therefore, the previous quantities shall be referred to the generator nominal voltage and current level.
  • Page 189: Maximum Slip Frequency

    Section 7 1MRK 502 048-UUS A Impedance protection milliseconds. (To require that the impedance Z(R, X) travels through each of the two halves of the lens, for example, in 25 milliseconds, results in a tendency to miss the 1st pole-slip, that one immediately after the fault has been cleared.) The above timing is used to discriminate a fault from an out-of-step condition.
  • Page 190: Taking Care Of The Circuit Breaker Soundness

    Section 7 1MRK 502 048-UUS A Impedance protection PickupAngle = 120° → fsMax = 25 ⋅ 0.333 = 8.333 Hz PickupAngle = 130° → fsMax = 25 ⋅ 0.277 = 6.944 Hz The minimum value of fsMax is 6.994 Hz. When PickupAngle = 110degrees, fsMax = 7.777Hz.
  • Page 191 Section 7 1MRK 502 048-UUS A Impedance protection tBreaker milliseconds before the rotor (power) angle reaches 0 degrees, where the currents are at their minimum possible values. The breaker contacts will open at almost exactly 0 degrees, as illustrated in Figure 82 for tBreaker = 0.060 s.
  • Page 192: Design

    Section 7 1MRK 502 048-UUS A Impedance protection very high currents due pos. seq. current in kA to out-of-step condition trip command to CB rotor angle in radian ← after 1st pole slip fault cleared → ← 2nd current increases under fault conditions current decreases fault...
  • Page 193: Technical Data

    Section 7 1MRK 502 048-UUS A Impedance protection Calculation of Calculation of UPSRE UPSRE R and X parts R and X parts UPSIM UPSIM of the complex of the complex Z(R,X) Z(R,X) UPSMAG UPSMAG positive - positive - IPSRE IPSRE sequence sequence Z(R,X)
  • Page 194: Functionality

    Section 7 1MRK 502 048-UUS A Impedance protection 7.5.2 Functionality Heavy load transfer is common in many power networks and may make fault resistance coverage difficult to achieve. In such a case, Load encroachment LEPDIS function can be used to prevent operation of the of the underimpedance measuring zones during heavy loads.
  • Page 195: Operation Principle

    Section 7 1MRK 502 048-UUS A Impedance protection Table 81: LEPDIS Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 7.5.6 Operation principle The basic impedance algorithm for the operation of Load encroachment LEPDIS is the same as for the distance zone measuring function.
  • Page 196: Simplified Logic Diagrams

    Section 7 1MRK 502 048-UUS A Impedance protection LdAngle LdAngle LdAngle LdAngle ANSI10000144-2-en.vsd ANSI10000144 V2 EN Figure 85: Characteristic of load encroachment function The reach is limited by the minimum operation current and the distance measuring zones. 7.5.6.2 Simplified logic diagrams Figure schematically presents the creation of the phase-to-phase operating conditions.
  • Page 197: Technical Data

    Section 7 1MRK 502 048-UUS A Impedance protection Block I ³ 0.05 & & & ³ × phmax DLECND Bool to & BLOCK integer & I < 10 ms & 20 ms < × phmax ANSI10000226-2-en.vsd ANSI10000226 V2 EN Figure 86: Phase-to-phase AB operating conditions (residual current criteria) Special attention is paid to correct phase selection at evolving faults.
  • Page 199: Identification

    Section 8 1MRK 502 048-UUS A Current protection Section 8 Current protection Four step phase overcurrent protection 3-phase output OC4PTOC (51/67) 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Four step phase overcurrent protection OC4PTOC 51/67 3I>...
  • Page 200: Function Block

    Section 8 1MRK 502 048-UUS A Current protection 8.1.3 Function block OC4PTOC (51_67) I3P* TRIP V3P* TRST1 BLOCK TRST2 BLK1 TRST3 BLK2 TRST4 BLK3 PICKUP BLK4 PU_ST1 PU_ST2 PU_ST3 PU_ST4 PU_A PU_B PU_C 2NDHARM ANSI08000002-2-en.vsd ANSI08000002 V2 EN Figure 87: OC4PTOC (51/67) function block 8.1.4 Signals...
  • Page 201: Settings

    Section 8 1MRK 502 048-UUS A Current protection Name Type Description BOOLEAN Pick up signal from step 1 BOOLEAN Pick up signal from step 2 BOOLEAN Pickup signal step 3 BOOLEAN Pickup signal step 4 STL1 BOOLEAN Pickup signal from phase A STL2 BOOLEAN Pickup signal from phase B...
  • Page 202 Section 8 1MRK 502 048-UUS A Current protection Name Values (Range) Unit Step Default Description DirMode2 Disabled Non-directional Directional mode of step 2 off / non-directional / Non-directional forward / reverse Forward Reverse I2> 5 - 2500 Phase current operate level for step 2 in % of IBase 0.000 - 60.000 0.001...
  • Page 203: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection Table 86: OC4PTOC (51_67) Group settings (advanced) Name Values (Range) Unit Step Default Description HarmRestrain Disabled Disabled Enable block from harmonic restrain Enabled 2ndHarmStab 5 - 100 %IFund Pickup of second harm restraint in % of Fundamental HarmRestrain1 Disabled...
  • Page 204 Section 8 1MRK 502 048-UUS A Current protection • The direction element • The harmonic Restraint Blocking function • The four step over current function • The mode selection If VT inputs are not available or not connected, setting parameter DirModeSelx shall be left to default value, Non-directional.
  • Page 205 Section 8 1MRK 502 048-UUS A Current protection the type of the measurement used for all overcurrent stages. It is possible to select either discrete Fourier filter (DFT) or true RMS filter (RMS). If DFT option is selected then only the RMS value of the fundamental frequency components of each phase current is derived.
  • Page 206 Section 8 1MRK 502 048-UUS A Current protection Phase-ground short circuit: dir A (Equation 44) ANSIEQUATION1452 V1 EN ref B dir B (Equation 45) ANSIEQUATION1453 V1 EN ref C dir C (Equation 46) ANSIEQUATION1454 V1 EN Technical manual...
  • Page 207 Section 8 1MRK 502 048-UUS A Current protection ANSI09000636-1-en.vsd ANSI09000636 V1 EN Figure 89: Directional characteristic of the phase overcurrent protection 1 RCA = Relay characteristic angle 55° 2 ROA = Relay operating angle 80° 3 Reverse 4 Forward If no blockings are given the pickup signals will start the timers of the step. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic.
  • Page 208: Second Harmonic Blocking Element

    Section 8 1MRK 502 048-UUS A Current protection Characteristx=DefTime 0-tx a>b Pickupx 0-txMin Inve rse Characteristx=Inve rse STAGE x_DIR_Int DirModeSelx=Disa bled DirModeSelx=Non-dire ctional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI12000008-3-en.vsd ANSI12000008-3-en.vsd ANSI12000008 V3 EN Figure 90: Simplified logic diagram for OC4PTOC 8.1.8 Second harmonic blocking element A harmonic restrain of the Four step overcurrent protection function OC4PTOC 51_67 can be chosen.
  • Page 209: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection 8.1.9 Technical data Table 89: OC4PTOC (51/67) technical data Function Setting range Accuracy lBase Operate current (5-2500)% of ± 1.0% of I at I ≤ I ± 1.0% of I at I > I lBase Reset ratio >...
  • Page 210: Functionality

    Section 8 1MRK 502 048-UUS A Current protection 8.2.2 Functionality The four step residual overcurrent protection, zero or negative sequence direction (EF4PTOC, 51N/67N) has independent inverse time delay settings for step 1 and 4. Step 2 and 3 are always definite time delayed. All IEC and ANSI inverse time characteristics are available.
  • Page 211: Signals

    Section 8 1MRK 502 048-UUS A Current protection 8.2.4 Signals Table 90: EF4PTOC Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for polarizing voltage inputs SIGNAL I3PPOL GROUP Three phase group signal for polarizing current inputs SIGNAL I3PDIR...
  • Page 212: Settings

    Section 8 1MRK 502 048-UUS A Current protection 8.2.5 Settings Table 92: EF4PTOC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On EnaDir Disable Enable Enabling the Directional calculation Enable AngleRCA -180 - 180 Relay characteristic angle (RCA) polMethod Voltage...
  • Page 213 Section 8 1MRK 502 048-UUS A Current protection Name Values (Range) Unit Step Default Description 0.05 - 999.00 0.01 0.05 Time multiplier for the dependent time delay for step 1 IMin1 1 - 10000 Minimum operate current for step1 in % of IBase t1Min 0.000 - 60.000...
  • Page 214 Section 8 1MRK 502 048-UUS A Current protection Name Values (Range) Unit Step Default Description Characterist4 ANSI Ext. inv. ANSI Def. Time Time delay curve type for step 4 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
  • Page 215: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection 8.2.6 Monitored data Table 94: EF4PTOC Monitored data Name Type Values (Range) Unit Description STDIR INTEGER 3=Both Fault direction coded as 1=Forward integer 2=Reverse 0=No direction REAL Operating current level UPol REAL Polarizing voltage level IPol REAL...
  • Page 216: Internal Polarizing

    Section 8 1MRK 502 048-UUS A Current protection • parallel connection of current instrument transformers in all three phases (Holm-Green connection). • one single core balance, current instrument transformer (cable CT). • one single current instrument transformer located between power system WYE point and ground (that is, current transformer located in the neutral grounding of a WYE connected transformer winding).
  • Page 217 Section 8 1MRK 502 048-UUS A Current protection Voltage polarizing When voltage polarizing is selected the protection will use either the residual voltage 3V or the negative sequence voltage V as polarizing quantity V3P. The residual voltage can be: directly measured (when a dedicated VT input of the IED is connected in PCM600 to the fourth analog input of the pre-processing block connected to EF4PTOC (51N/ 67N) function input V3P).
  • Page 218 Section 8 1MRK 502 048-UUS A Current protection The polarizing phasor is used together with the phasor of the operating directional current, in order to determine the direction to the ground fault (Forward/Reverse). In order to enable voltage polarizing the magnitude of polarizing voltage shall be bigger than a minimum level defined by setting parameter VpolMin.
  • Page 219: External Polarizing For Ground-Fault Function

    Section 8 1MRK 502 048-UUS A Current protection × × Ipol = (IA+alpha IB+alpha IC)/3 (Equation 52) ANSIEQUATION2406 V2 EN where: IA, IB and IC are fundamental frequency phasors of three individual phase currents. alpha phasor with an angle of 120 degrees. The polarizing current is pre-processed by a discrete fourier filter.
  • Page 220: Base Quantities Within The Protection

    Section 8 1MRK 502 048-UUS A Current protection Distance protection directional function. Negative sequence based overcurrent function. 8.2.7.4 Base quantities within the protection The base quantities are entered as global settings for all functions in the IED. Base current (IBase) shall be entered as rated phase current of the protected object in primary amperes. Base voltage (VBase) shall be entered as rated phase-to-phase voltage of the protected object in primary kV.
  • Page 221: Directional Supervision Element With Integrated Directional Comparison Function

    Section 8 1MRK 502 048-UUS A Current protection available. For the complete list of available inverse curves please refer to section "Inverse time characteristics". • Time delay related settings. By these parameter settings the properties like definite time delay, minimum operating time for inverse curves and reset time delay are defined.
  • Page 222 Section 8 1MRK 502 048-UUS A Current protection polMethod. The polarizing quantity will be selected by the function in one of the following three ways: When polMethod = Voltage, VPol will be used as polarizing quantity. When polMethod = Current, IPol will be used as polarizing quantity. WhenpolMethod = Dual, VPol + IPol ·...
  • Page 223 Section 8 1MRK 502 048-UUS A Current protection BLKTR Characteristx=DefTime 0-tx a>b Pickupx PU_STx 0-txMin BLKx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModeSelx=Disabled DirModeSelx=Non-directional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI11000281-1-en.vsd ANSI11000281-1-en.vsd ANSI11000281 V1 EN Figure 95: Operating characteristic for ground-fault directional element using the zero sequence components Technical manual...
  • Page 224 Section 8 1MRK 502 048-UUS A Current protection Operating area PUREV 0.6 * IDirPU Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for PUREV 40% of RCA +85 deg IDIR 65 deg pol = - -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
  • Page 225 Section 8 1MRK 502 048-UUS A Current protection PUFW=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than setting parameter IDirPU and directional supervision element detects fault in forward direction. PUREV=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than 60% of setting parameter IDirPU and directional supervision element detects fault in reverse direction.
  • Page 226: Second Harmonic Blocking Element

    Section 8 1MRK 502 048-UUS A Current protection 8.2.8 Second harmonic blocking element A harmonic restrain of the Four step residual overcurrent protection function EF4PTOC 51N_67N can be chosen. If the ratio of the 2nd harmonic component in relation to the fundamental frequency component in the residual current exceeds the pre-set level defined by parameter setting 2ndHarmStab.
  • Page 227: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection 8.2.9 Technical data Table 95: EF4PTOC (51N/67N) technical data Function Range or value Accuracy lBase Operate current (1-2500)% of ± 1.0% of I at I < I ± 1.0% of I at I > I Reset ratio >...
  • Page 228: Sensitive Directional Residual Overcurrent And Power Protection Sdepsde (67N)

    Section 8 1MRK 502 048-UUS A Current protection Sensitive directional residual overcurrent and power protection SDEPSDE (67N) 8.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Sensitive directional residual over SDEPSDE current and power protection 8.3.2 Functionality In isolated networks or in networks with high impedance grounding, the ground fault...
  • Page 229: Signals

    Section 8 1MRK 502 048-UUS A Current protection 8.3.4 Signals Table 96: SDEPSDE (67N) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKUN BOOLEAN...
  • Page 230 Section 8 1MRK 502 048-UUS A Current protection Name Values (Range) Unit Step Default Description RCADir -179 - 180 Relay characteristic angle RCA RCAComp -10.0 - 10.0 Relay characteristic angle compensation ROADir 0 - 90 Relay open angle ROA used as release in phase mode INCosPhi>...
  • Page 231: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.100 Time delay for non-directional residual overvoltage INRel> 0.25 - 200.00 0.01 1.00 Residual release current for all directional modes, in % of IBase UNRel>...
  • Page 232: Directional Residual Current Protection Measuring 3I

    Section 8 1MRK 502 048-UUS A Current protection 8.3.7.2 Directional residual current protection measuring 3I ·cos φ φ is defined as the angle between the residual current 3I and the reference voltage. Vref = jRCADir , that is -3V rotated by the set characteristic angle RCADir (φ=ang(3I ang(V ) ).
  • Page 233 Section 8 1MRK 502 048-UUS A Current protection RCA = -90°, ROA = 90° ) – ang(V = ang(3I en06000649_ansi.vsd ANSI06000649 V1 EN Figure 101: RCADir set to -90° For trip, both the residual current 3I ·cos φ and the release voltage 3V , must be larger than the set levels: INCosPhiPU and VNRelPU.
  • Page 234 Section 8 1MRK 502 048-UUS A Current protection Operate area RCA = 0° ANSI06000650-2- en06000650_ansi.vsd ANSI06000650 V2 EN Figure 102: Characteristic with ROADir restriction The function indicates forward/reverse direction to the fault. Reverse direction is defined as 3I ·cos (φ + 180°) ≥ the set value. It is also possible to tilt the characteristic to compensate for current transformer angle error with a setting RCAComp as shown in the figure 103: Technical manual...
  • Page 235 Section 8 1MRK 502 048-UUS A Current protection Operate area RCA = 0° Instrument transformer RCAcomp angle error Characteristic after angle compensation (to prot) (prim) en06000651_ansi.vsd ANSI06000651 V1 EN Figure 103: Explanation of RCAComp 8.3.7.3 Directional residual power protection measuring 3I ·...
  • Page 236 Section 8 1MRK 502 048-UUS A Current protection This sub-function has the possibility of choice between definite time delay and inverse time delay. The inverse time delay is defined as: ⋅ ⋅ ⋅ TDSN cos ( reference ϕ ⋅ ⋅ cos ( measured ϕ...
  • Page 237: Directional Functions

    Section 8 1MRK 502 048-UUS A Current protection The function indicate forward/reverse direction to the fault. Reverse direction is defined as φ is within the angle sector: RCADir + 180° ± ROADir This sub-function has definite time delay. 8.3.7.5 Directional functions For all the directional functions there are directional pickup signals PUFW: fault in the forward direction, and PUREV: Pickup in the reverse direction.
  • Page 238 Section 8 1MRK 502 048-UUS A Current protection When the function is activated binary output signal PUVN is activated. If the output signals are active after the set delay tVNNonDir TRIP and TRUN are activated. A simplified logical diagram of the total function is shown in figure 105. PUNDIN INNonDirPU 0 - t...
  • Page 239: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection 8.3.8 Technical data Table 101: SDEPSDE (67N) technical data Function Range or value Accuracy lBase Operate level for 3I ·cosj (0.25-200.00)% of ± 1.0% of I at I £ I directional residual ±...
  • Page 240: Thermal Overload Protection, Two Time Constants Trpttr (49)

    Section 8 1MRK 502 048-UUS A Current protection Function Range or value Accuracy Relay open angle ROA (0-90) degrees ± 2.0 degrees Operate time, non-directional 60 ms typically at 0 to 2 x I 60 ms typically at 0 to 2 x 1 residual over current Reset time, non-directional 65 ms typically at 2 to 0 x I...
  • Page 241: Function Block

    Section 8 1MRK 502 048-UUS A Current protection The thermal overload protection estimates the internal heat content of the transformer/ generator (temperature) continuously. This estimation is made by using a thermal model of the transformer/generator with two time constants, which is based on current measurement.
  • Page 242: Settings

    Section 8 1MRK 502 048-UUS A Current protection Table 103: TRPTTR (49) Output signals Name Type Description TRIP BOOLEAN Trip Signal START BOOLEAN Pickup signal ALARM1 BOOLEAN First level alarm signal ALARM2 BOOLEAN Second level alarm signal LOCKOUT BOOLEAN Lockout signal WARNING BOOLEAN Trip within set warning time...
  • Page 243: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection Table 105: TRPTTR (49) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 8.4.6 Monitored data Table 106: TRPTTR (49) Monitored data Name Type...
  • Page 244 Section 8 1MRK 502 048-UUS A Current protection If this calculated relative temperature is larger than the relative temperature level corresponding to the set operate (trip) current a pickup output signal PICKUP is activated. The actual temperature at the actual execution cycle is calculated as: >...
  • Page 245 Section 8 1MRK 502 048-UUS A Current protection æ ö = - × ç final operate ÷ ç ÷ operate è ø final (Equation 61) EQUATION1176 V1 EN The calculated time to trip can be monitored as it is exported from the function as a real figure TTRIP.
  • Page 246 Section 8 1MRK 502 048-UUS A Current protection Final Temp PICKUP > TripTemp actual heat comtent Calculation of heat content Calculation of final temperature ALARM1 Actual Temp > Alarm1,Alarm2 ALARM2 Temp Current base used TRIP Actual Temp > TripTemp Binary input: LOCKOUT Forced cooling Enabled/...
  • Page 247: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection 8.4.8 Technical data Table 107: TRPTTR (49) technical data Function Range or value Accuracy IBase Base current 1 and 2 (30–250)% of ± 1.0% of I Operate time: = load current before overload IEC 60255–8, ±5% + 200 ms occurs Time constant τ...
  • Page 248: Function Block

    Section 8 1MRK 502 048-UUS A Current protection Breaker failure protection (CCRBRF, 50BF) ensures fast back-up tripping of surrounding breakers in case the protected breaker fails to open. CCRBRF (50BF) can be current based, contact based, or an adaptive combination of these two conditions. Current check with extremely short reset time is used as check criterion to achieve high security against inadvertent operation.
  • Page 249: Settings

    Section 8 1MRK 502 048-UUS A Current protection Table 109: CCRBRF (50BF) Output signals Name Type Description TRBU BOOLEAN Back-up trip by breaker failure protection function TRRET BOOLEAN Retrip by breaker failure protection function 8.5.5 Settings Table 110: CCRBRF (50BF) Group settings (basic) Name Values (Range) Unit...
  • Page 250: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection 8.5.6 Monitored data Table 113: CCRBRF (50BF) Monitored data Name Type Values (Range) Unit Description REAL Measured current in phase A REAL Measured current in phase B REAL Measured current in phase C REAL Measured residual current 8.5.7...
  • Page 251 Section 8 1MRK 502 048-UUS A Current protection 30 ms BFI_3P BFI_A BFP Started A 150ms BLOCK Time out A Reset A Retrip Time Out A BackupTrip A ANSI09000976-3-en.vsd ANSI09000976 V3 EN Figure 109: Simplified logic scheme of the CCRBRF (50BF) starting logic Pickup_PH a>b FunctionMode...
  • Page 252: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection BUTripMode 1 out of 3 2 out of 4 1 out of 4 Current High A BFP Started A a>b IN> Contact Closed A Current High B From other Backup Time Out A Current High C phases Current High A...
  • Page 253: Pole Discrepancy Protection Ccrpld (52Pd)

    Section 8 1MRK 502 048-UUS A Current protection Function Range or value Accuracy Reset ratio > 95% Timers (0.000-60.000) s ± 0.5% ±10 ms Operate time for current 20 ms typically detection Reset time for current 10 ms maximum detection Pole discrepancy protection CCRPLD (52PD) 8.6.1 Identification...
  • Page 254: Function Block

    Section 8 1MRK 502 048-UUS A Current protection 8.6.3 Function block CCRPLD (52PD) I3P* TRIP BLOCK PICKUP CLOSECMD OPENCMD EXTPDIND ANSI08000041-1-en.vsd ANSI08000041 V1 EN Figure 113: CCRPLD (52PD) function block 8.6.4 Signals Table 115: CCRPLD (52PD) Input signals Name Type Default Description GROUP...
  • Page 255: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection Name Values (Range) Unit Step Default Description CurrentSel Disabled Disabled Current function selection CB oper monitor Continuous monitor CurrUnsymPU 0 - 100 Unsym magn of lowest phase current compared to the highest. CurrRelPU 0 - 100 Current magnitude for release of the function in...
  • Page 256 Section 8 1MRK 502 048-UUS A Current protection C.B. poleDiscrepancy Signal from C.B. ANSI_en05000287.vsd ANSI05000287 V1 EN Figure 114: Pole discrepancy external detection logic This binary signal is connected to a binary input of the IED. The appearance of this signal will start a timer that will give a trip signal after the set time delay.
  • Page 257: Pole Discrepancy Signaling From Circuit Breaker

    Section 8 1MRK 502 048-UUS A Current protection PD Signal from CB EXTPDIND 150 ms 0-Trip CLOSECMD tTrip+200 ms OPENCMD CB oper monitor Unsymmetrical current detection ANSI08000014-2-en.vsd ANSI08000014 V2 EN Figure 115: Simplified block diagram of pole discrepancy function - contact and current based The pole discrepancy protection is blocked if the input signal BLOCK is high.
  • Page 258: Unsymmetrical Current Detection

    Section 8 1MRK 502 048-UUS A Current protection 8.6.7.2 Unsymmetrical current detection Unsymmetrical current indicated if: • any phase current is lower than CurrUnsymPU of the highest current in the three phases. • the highest phase current is greater than CurrRelPU of IBase. If these conditions are true, an unsymmetrical condition is detected.
  • Page 259: Directional Overpower Protection Goppdop (32)

    Section 8 1MRK 502 048-UUS A Current protection reactive power flow in the power system. There are a number of applications where such functionality is needed. Some of them are: • detection of reversed active power flow • detection of high reactive power flow Each function has two steps with definite time delay.
  • Page 260: Signals

    Section 8 1MRK 502 048-UUS A Current protection 8.7.2.3 Signals Table 121: GOPPDOP (32) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN...
  • Page 261: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection Name Values (Range) Unit Step Default Description Power2 0.0 - 500.0 Power setting for stage 2 in % of calculated power base value Angle2 -180.0 - 180.0 Characteristic angle for stage 2 TripDelay2 0.010 - 6000.000 0.001...
  • Page 262: Identification

    Section 8 1MRK 502 048-UUS A Current protection 8.7.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Directional underpower protection GUPPDUP P < SYMBOL-LL V2 EN 8.7.3.2 Function block GUPPDUP (37) I3P* TRIP V3P* TRIP1 BLOCK TRIP2 BLK1...
  • Page 263: Settings

    Section 8 1MRK 502 048-UUS A Current protection Name Type Description PICKUP1 BOOLEAN Pickup signal from stage 1 PICKUP2 BOOLEAN Pickup signal from stage 2 REAL Active Power PPERCENT REAL Active power in % of calculated power base value REAL Reactive power QPERCENT REAL...
  • Page 264: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection Table 131: GUPPDUP (37) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups Mode A, B, C Pos Seq Mode of measurement for current and voltage Arone...
  • Page 265 Section 8 1MRK 502 048-UUS A Current protection Chosen current phasors Derivation of Complex S( angle) S( angle) < TRIP 1 S( composant) power Power1 Chosen voltage calculation in Char angle phasors PICKUP1 S( angle) < TRIP2 Power2 PICKUP2 P = POWRE Q = POWIM ANSI06000438-2-en.vsd ANSI06000438 V2 EN...
  • Page 266: Low Pass Filtering

    Section 8 1MRK 502 048-UUS A Current protection Mode Set value: Formula used for complex power calculation × (Equation 69) EQUATION2060-ANSI V1 EN = × × (Equation 70) EQUATION2061-ANSI V1 EN = × × (Equation 71) EQUATION2062-ANSI V1 EN = × ×...
  • Page 267: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection make slower measurement response to the step changes in the measured quantity. Filtering is performed in accordance with the following recursive formula: ⋅ − ⋅ S TD S TD S Calculated (Equation 73) EQUATION1959-ANSI V1 EN Where is a new measured value to be used for the protection function...
  • Page 268: Functionality

    Section 8 1MRK 502 048-UUS A Current protection 8.8.2 Functionality Inadvertent or accidental energizing of off-line generators has occurred often enough due to operating errors, breaker head flashovers, control circuit malfunctions, or a combination of these causes. Inadvertently energized generator operates as induction motor drawing a large current from the system.
  • Page 269: Settings

    Section 8 1MRK 502 048-UUS A Current protection 8.8.5 Settings Table 137: AEGGAPC (50AE) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled I> 5 - 900 Phase current pickup in % of IBase 0.000 - 60.000 0.001 0.030...
  • Page 270: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection is larger than IPickup for the period tOC then the TRIP signal becomes activated. Also PICKUP signal becomes activated when overcurrent is detected. When the maximum phase-to-phase voltage is larger than 59_Drop_out for a period longer than tDisarm, it is ensured generator is on line.
  • Page 271: Negative-Sequence Time Overcurrent Protection For Machines Ns2Ptoc (46I2)

    Section 8 1MRK 502 048-UUS A Current protection Function Range or value Accuracy Impulse margin time, 15 ms typically overcurrent Operate value, (2-150)% of VBase ± 0.5% of V at V<V undervoltage ± 0.5% of V at V>V Critical impulse time, 10 ms typically at 2 to 0 x V undervoltage Impulse margin time,...
  • Page 272: Function Block

    Section 8 1MRK 502 048-UUS A Current protection To provide an effective protection for the generator for external unbalanced conditions, NS2PTOC (46I2) is able to directly measure the negative sequence current. NS2PTOC (46I2) also has a time delay characteristic which matches the heating characteristic of the generator as defined in standard IEEE C50.13.
  • Page 273: Signals

    Section 8 1MRK 502 048-UUS A Current protection 8.9.4 Signals Table 141: NS2PTOC (46I2) Input signals Name Type Default Description GROUP Group connection for neg seq. SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN Block of step 1 BLK2 BOOLEAN Block of step 2 Table 142: NS2PTOC (46I2) Output signals...
  • Page 274: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection Name Values (Range) Unit Step Default Description 1.0 - 99.0 10.0 Neg. seq. capability value of generator for step 1, in sec t1Min 0.000 - 60.000 0.001 5.000 Minimum trip time for inverse delay of step 1, in t1Max 0.00 - 6000.00 0.01...
  • Page 275 Section 8 1MRK 502 048-UUS A Current protection CurveType1 = Inverse, NS2PTOC (46I2) operates with an Inverse Time Delay characteristic. Step 2 can only operate in the Definite Time (DT) mode. The characteristic defines the time period between the moment when measured negative sequence current exceeds the set pickup levels in parameter I2-1>...
  • Page 276 Section 8 1MRK 502 048-UUS A Current protection Operate time t1Max (Default= 1000 s) t1Min (Default= 5 s) Current I2-1> IEC09000691-2-en.vsd IEC09000691 V2 EN Figure 122: Inverse time characteristic with t1Min and t1Max For a detailed description of inverse time characteristic, see chapter "Inverse time characteristics".
  • Page 277: Pickup Sensitivity

    Section 8 1MRK 502 048-UUS A Current protection 8.9.7.1 Pickup sensitivity The trip pickup levels Current I2-1> and I2-2> of NS2PTOC (46I2) are freely settable over a range of 3 to 500 % of rated generator current IBase. The wide range of pickup setting is required in order to be able to protect generators of different types and sizes.
  • Page 278: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection PU_ST1 PU_ST2 ALARM 0-tAlarm TRST1 TRIP TRST2 ANSI09000690-3-en.vsd ANSI09000690 V3 EN Figure 124: Simplified logic diagram for the PICKUP, ALARM and TRIP signals for NS2PTOC (46I2) 8.9.8 Technical data Table 146: NS2PTOC (46I2) technical data Function Range or value Accuracy...
  • Page 279: Voltage-Restrained Time Overcurrent Protection Vrpvoc (51V)

    Section 8 1MRK 502 048-UUS A Current protection 8.10 Voltage-restrained time overcurrent protection VRPVOC (51V) 8.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Voltage-restrained time overcurrent VRPVOC I>/U< protection 8.10.2 Functionality Voltage-restrained time overcurrent protection (VRPVOC, 51V) function is recommended as a backup protection for generators.
  • Page 280: Signals

    Section 8 1MRK 502 048-UUS A Current protection 8.10.4 Signals Table 147: VRPVOC (51V) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function both stages BLKOC BOOLEAN...
  • Page 281: Settings

    Section 8 1MRK 502 048-UUS A Current protection 8.10.5 Settings Table 149: VRPVOC (51V) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled StartCurr 2.0 - 5000.0 120.0 Pick up current level in % of IBase Characterist ANSI Ext.
  • Page 282: Monitored Data

    Section 8 1MRK 502 048-UUS A Current protection Table 151: VRPVOC (51V) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 8.10.6 Monitored data Table 152: VRPVOC (51V) Monitored data Name Type...
  • Page 283 Section 8 1MRK 502 048-UUS A Current protection the decrease in the magnitude of the measured voltage quantity. Two different types of dependencies are available: • Voltage restraint overcurrent (when setting parameter VDepMode = Slope) Current Pickup Level PickupCurr VDepFact * PickupCurr 0,25 VHighLimit VBase...
  • Page 284 Section 8 1MRK 502 048-UUS A Current protection Current Pickup Level PickupCurr VDepFact * PickupCurr VHighLimit VBase ANSI10000124-1-en.vsd ANSI10000124 V1 EN Figure 127: Example for current pickup level variation as function of measured voltage magnitude in Step mode of operation This feature simply changes the set overcurrent pickup level in accordance with magnitude variations of the measured voltage.
  • Page 285: Logic Diagram

    Section 8 1MRK 502 048-UUS A Current protection 8.10.7.4 Logic diagram DEF time 0-tDef_OC selected TROC MaxPhCurr PU_OC a>b PickupCurr Inverse Inverse time selected Voltage control or restraint feature MinPh-Ph Voltage ANSI10000214-2-en.vsd ANSI10000214 V2 EN Figure 128: Simplified internal logic diagram for overcurrent function DEF time 0-tDef_UV selected...
  • Page 286: Technical Data

    Section 8 1MRK 502 048-UUS A Current protection The pickup signal starts a definite time delay. If the value of the pickup signal is one for longer than the set time delay, the undervoltage step sets its trip signal to one. This undervoltage functionality together with additional ACT logic can be used to provide functionality for overcurrent protection with undervoltage seal-in.
  • Page 287: Two Step Undervoltage Protection Uv2Ptuv (27)

    Section 9 1MRK 502 048-UUS A Voltage protection Section 9 Voltage protection Two step undervoltage protection UV2PTUV (27) 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 3U< SYMBOL-R-2U-GREATER-THAN V2 EN 9.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
  • Page 288: Signals

    Section 9 1MRK 502 048-UUS A Voltage protection 9.1.4 Signals Table 154: UV2PTUV (27) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN Block of step 1 BLK2 BOOLEAN Block of step 2...
  • Page 289: Monitored Data

    Section 9 1MRK 502 048-UUS A Voltage protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 5.000 Minimum operate time for inverse curves for step 1 0.05 - 1.10 0.01 0.05 Time multiplier for the inverse time delay for step 1 OperationStep2 Disabled...
  • Page 290: Measurement Principle

    Section 9 1MRK 502 048-UUS A Voltage protection UV2PTUV (27) can be set to measure phase-to-ground fundamental value, phase-to- phase fundamental value, phase-to-ground true RMS value or phase-to-phase true RMS value. The choice of the measuring is done by the parameter ConnType. The voltage related settings are made in percent of base voltage which is set in kV phase-to-phase voltage.
  • Page 291: Blocking

    Section 9 1MRK 502 048-UUS A Voltage protection The type B curve is described as: × 0.055 æ ö Vpickup < -V × ç ÷ è ø < Vpickup (Equation 78) EQUATION1608 V1 EN The lowest voltage is always used for the inverse time delay integration. The details of the different inverse time characteristics are shown in section 21.3 "Inverse time characteristics".
  • Page 292: Design

    Section 9 1MRK 502 048-UUS A Voltage protection 9.1.7.4 Design The voltage measuring elements continuously measure the three phase-to-neutral voltages or the three phase-to-phase voltages. Recursive fourier filters or true RMS filters of input voltage signals are used. The voltages are individually compared to the set value, and the lowest voltage is used for the inverse time characteristic integration.
  • Page 293: Technical Data

    Section 9 1MRK 502 048-UUS A Voltage protection 9.1.8 Technical data Table 159: UV2PTUV (27) technical data Function Range or value Accuracy VBase Operate voltage, low and (1–100)% of ± 0.5% of V high step Reset ratio <102% Inverse time See table characteristics for low and high step, see table...
  • Page 294: Function Block

    Section 9 1MRK 502 048-UUS A Voltage protection OV2PTOV (59) has two voltage steps, where step 1 can be set as inverse or definite time delayed. Step 2 is always definite time delayed. OV2PTOV (59) has a high reset ratio to allow settings close to system service voltage. 9.2.3 Function block OV2PTOV (59)
  • Page 295: Settings

    Section 9 1MRK 502 048-UUS A Voltage protection 9.2.5 Settings Table 162: OV2PTOV (59) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time Definite time Selection of time delay curve type for step 1...
  • Page 296: Monitored Data

    Section 9 1MRK 502 048-UUS A Voltage protection 9.2.6 Monitored data Table 164: OV2PTOV (59) Monitored data Name Type Values (Range) Unit Description REAL Voltage in phase A REAL Voltage in phase B REAL Voltage in phase C 9.2.7 Operation principle Two step overvoltage protection OV2PTOV (59) is used to detect high power system voltage.
  • Page 297: Measurement Principle

    Section 9 1MRK 502 048-UUS A Voltage protection When phase-to-ground voltage measurement is selected the function automatically introduces division of the base value by the square root of three. 9.2.7.1 Measurement principle All the three voltages are measured continuously, and compared with the set values, Pickup1 for Step 1 and Pickup2 for Step 2.
  • Page 298: Blocking

    Section 9 1MRK 502 048-UUS A Voltage protection The highest phase (or phase-to-phase) voltage is always used for the inverse time delay integration, see Figure 134. The details of the different inverse time characteristics are shown in section "Inverse time characteristics".
  • Page 299 Section 9 1MRK 502 048-UUS A Voltage protection value, and the highest voltage is used for the inverse time characteristic integration. A special logic is included to achieve the 1 out of 3, 2 out of 3 or 3 out of 3 criteria to fulfill the PICKUP condition.
  • Page 300: Technical Data

    Section 9 1MRK 502 048-UUS A Voltage protection 9.2.8 Technical data Table 165: OV2PTOV (59) technical data Function Range or value Accuracy VBase Operate voltage, step 1 (1-200)% of ± 0.5% of V at V < V and 2 ± 0.5% of V at V > V Reset ratio >98% Inverse time...
  • Page 301: Function Block

    Section 9 1MRK 502 048-UUS A Voltage protection single voltage input transformer fed from a broken delta or neutral point voltage transformer. ROV2PTOV (59N) has two voltage steps, where step 1 can be set as inverse or definite time delayed. Step 2 is always definite time delayed. 9.3.3 Function block ROV2PTOV (59N)
  • Page 302: Settings

    Section 9 1MRK 502 048-UUS A Voltage protection 9.3.5 Settings Table 168: ROV2PTOV (59N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time Definite time Selection of time delay curve type for step 1...
  • Page 303: Measurement Principle

    Section 9 1MRK 502 048-UUS A Voltage protection adding the input phase voltages. 3V may also be input single phase by either measuring directly from a voltage transformer in the neutral of a power transformer, or from a secondary broken delta connection of a transformer with a wye-grounded primary. ROV2PTOV (59N) has two steps with separate time delays.
  • Page 304 Section 9 1MRK 502 048-UUS A Voltage protection Comparator Phase 1 PU_ST1 VN > Pickup1 TRST1 Pickup PICKUP & Trip Output Logic Time integrator TRIP or Timer t1 Step 1 PU_ST2 Comparator Phase 1 TRST2 VN > Pickup2 Pickup PICKUP &...
  • Page 305: Technical Data

    Section 9 1MRK 502 048-UUS A Voltage protection 9.3.8 Technical data Table 171: ROV2PTOV (59N) technical data Function Range or value Accuracy VBase Operate voltage, step 1 (1-200)% of ± 0.5% of V at V < V ± 0.5% of V at V > V Operate voltage, step 2 (1–100)% of VBase...
  • Page 306: Function Block

    Section 9 1MRK 502 048-UUS A Voltage protection that are not designed to carry flux. This will cause eddy currents to flow. These eddy currents can cause excessive heating and severe damage to insulation and adjacent parts in a relatively short time. The function has settable inverse operating curves and independent alarm stages.
  • Page 307: Monitored Data

    Section 9 1MRK 502 048-UUS A Voltage protection Name Values (Range) Unit Step Default Description t_MinTripDelay 0.005 - 60.000 0.001 7.000 Minimum trip delay for V/Hz curve TDForIEEECurve 1 - 60 Time multiplier for IEEE inverse type curve AlarmPickup 50.0 - 120.0 100.0 Alarm pickup level tAlarm...
  • Page 308 Section 9 1MRK 502 048-UUS A Voltage protection uniformity of the excitation level of modern systems. If an emergency that causes overexcitation does occur, transformers may be damaged unless corrective action is taken. Transformer manufacturers recommend an overexcitation protection as a part of the transformer protection system.
  • Page 309 Section 9 1MRK 502 048-UUS A Voltage protection overexcitation ALARM signal. If this is not possible, the power transformer can be disconnected from the source, after a delay, by the TRIP signal. The IEC 60076 - 1 standard requires that transformers operate continuously at not more than 10% above rated voltage at no load, and rated frequency.
  • Page 310: Measured Voltage

    Section 9 1MRK 502 048-UUS A Voltage protection 9.4.7.1 Measured voltage A check is made if the Selected voltage signal is higher than 70% of the rated phase-to- ground voltage. When below this value, OEXPVPH (24) exits immediately and no excitation is calculated.
  • Page 311 Section 9 1MRK 502 048-UUS A Voltage protection æ ö measured ç ÷ è ø measured rated × measured æ ö VBase VBase f ç ÷ measured è ø rated (Equation 90) ANSIEQUATION2404 V1 EN Inverse delays as per figure 140, can be modified (limited) by a special definite delay setting t_MinTripDelay, see figure 139.
  • Page 312 Section 9 1MRK 502 048-UUS A Voltage protection IEEE OVEREXCITATION CURVES Time (s) 1000 TD = 60 TD = 20 TD = 10 TD = 9 TD = 8 TD = 7 TD = 6 TD = 5 TD = 4 TD = 3 TD = 2 TD = 1...
  • Page 313: Cooling

    Section 9 1MRK 502 048-UUS A Voltage protection 9.4.7.3 Cooling The overexcitation protection function (OEXPVPH, 24) is basically a thermal protection, therefore a cooling process has been introduced. An exponential cooling process is applied, with a time constant of 20 minutes. This means that if the voltage and frequency return to normal values (no more overexcitation), the normal temperature is assumed to be reached after approximately 5 times the time constant of 20 minutes.
  • Page 314: Overexcitation Alarm

    Section 9 1MRK 502 048-UUS A Voltage protection 9.4.7.5 Overexcitation alarm A separate step, AlarmPickup, is provided for alarming purpose. It is normally set 2% lower than (Pickup1) and has a definite time delay, tAlarm. This will give the operator an early warning.
  • Page 315: Identification

    Section 9 1MRK 502 048-UUS A Voltage protection Function Range or value Accuracy Curve type IEEE ± 5% + 40 ms × (0.18 IEEE t (Equation 93) EQUATION1645 V1 EN where M = (E/f)/(Vn/fn) Minimum time delay for inverse (0.000–60.000) s ±...
  • Page 316 Section 9 1MRK 502 048-UUS A Voltage protection only 95% of the stator winding. They leave 5% close to the neutral end unprotected. Under unfavorable conditions the blind zone may extend up to 20% from the neutral. The 95% stator ground fault protection measures the fundamental frequency voltage component in the generator star point and it operates when the fundamental frequency voltage exceeds the preset value.
  • Page 317: Function Block

    Section 9 1MRK 502 048-UUS A Voltage protection 9.5.3 Function block STEFPHIZ (59THD) NEUTVOLT* TRIP TERMVOLT* TRIP3H TRIP_VN BLOCK PICKUP BLOCK3RD PU_3H BLOCKVN PU_VN ANSI07000033 -3-en.vsd ANSI07000033 V3 EN Figure 143: STEFPHIZ (59THD) function block 9.5.4 Signals Table 178: STEFPHIZ (59THD) Input signals Name Type Default...
  • Page 318: Settings

    Section 9 1MRK 502 048-UUS A Voltage protection 9.5.5 Settings Table 180: STEFPHIZ (59THD) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled Beta 0.50 - 10.00 0.01 3.00 Portion of 3rd harm voltage in neutral point used as bias CBexists Defines if generator CB exists (between Gen &...
  • Page 319: Monitored Data

    Section 9 1MRK 502 048-UUS A Voltage protection 9.5.6 Monitored data Table 182: STEFPHIZ (59THD) Monitored data Name Type Values (Range) Unit Description REAL Mag. of 3rd harm. voltage at generator terminal side REAL Mag. of 3rd harm. voltage at generator neutral side REAL Total induced stator 3rd...
  • Page 320 Section 9 1MRK 502 048-UUS A Voltage protection - DV 3T,A 3T,B 3T,C en06000448_ansi.vsd ANSI06000448 V1 EN Figure 144: Generator 3 harmonic voltage characteristic at normal operation The generator is modeled as parts of a winding where a 3 harmonic voltage is induced along the winding, represented by the end voltages V (voltage drop across resistor) and in the figure.
  • Page 321 Section 9 1MRK 502 048-UUS A Voltage protection ³ Beta (Equation 94) EQUATION2359-ANSI V1 EN , and V are third harmonic phasors with real and imaginary parts. The factor Beta must be set not to risk operation under non-faulted conditions. The voltage V is measured via a voltage transformer between the generator neutral point and ground.
  • Page 322 Section 9 1MRK 502 048-UUS A Voltage protection Samples: Generator TRIP terminal harmonic Stator Complex VT3 voltage Fourier Ground filtering Fault TRIP3H giving VT3 detection TRIPVN harmonic Pickup based Pickup and trip logic PU3H Samples: Generator PU_VN neutral point harmonic Complex VN3 voltage Fourier...
  • Page 323 Section 9 1MRK 502 048-UUS A Voltage protection Beta ç V3N ç b ³ a ç V3N+V3T ç PU3H TRIP3H VT3BlkLevel a ³ b ç V3T ç PICKUP TRIP VNFundPU PU_VN b ³ a TRIPVN ANSI07000001-2-en.vsd ANSI07000001 V2 EN Figure 146: Simplified Pickup and Trip logical diagram of the STEFPHIZ (59THD) protection There are two different cases of generator block configuration;...
  • Page 324: Technical Data

    Section 9 1MRK 502 048-UUS A Voltage protection With the circuit breaker open, the total capacitance will be smaller compared to normal operating conditions. This means that the neutral point 3 harmonic voltage will be reduced compared to the normal operating condition. Therefore, there is a possibility to reduce the sensitivity of the protection when the generator circuit breaker is open.
  • Page 325: Underfrequency Protection Saptuf (81)

    Section 10 1MRK 502 048-UUS A Frequency protection Section 10 Frequency protection 10.1 Underfrequency protection SAPTUF (81) 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underfrequency protection SAPTUF f < SYMBOL-P V1 EN 10.1.2 Functionality Underfrequency occurs as a result of a lack of sufficient generation in the network.
  • Page 326: Signals

    Section 10 1MRK 502 048-UUS A Frequency protection 10.1.4 Signals Table 184: SAPTUF (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function Table 185: SAPTUF (81) Output signals Name Type Description...
  • Page 327: Measurement Principle

    Section 10 1MRK 502 048-UUS A Frequency protection than the set time delay the TRIP signal is issued. To avoid an unwanted trip due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function, that is, if the voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no PICKUP or TRIP signal is issued.
  • Page 328: Time Delay

    Section 10 1MRK 502 048-UUS A Frequency protection 10.1.7.2 Time delay The time delay for SAPTUF (81) is a settable definite time delay, specified by the setting tDelay. Trip signal issuing requires that the under frequency condition continues for at least the user set time delay.
  • Page 329: Overfrequency Protection Saptof (81)

    Section 10 1MRK 502 048-UUS A Frequency protection Function Range or value Accuracy Reset time, pickup function At 50 Hz: 60 ms typically at f -0.5 Hz to f +0.5 Hz At 60 Hz: 50 ms typically at f -0.5 Hz to f +0.5 Hz Operate time delay (0.000-60.000)s...
  • Page 330: Function Block

    Section 10 1MRK 502 048-UUS A Frequency protection 10.2.3 Function block SAPTOF (81) V3P* TRIP BLOCK BLKDMAGN ANSI09000280-1-en.vsd ANSI09000280 V1 EN Figure 151: SAPTOF (81) function block 10.2.4 Signals Table 189: SAPTOF (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK...
  • Page 331: Operation Principle

    Section 10 1MRK 502 048-UUS A Frequency protection 10.2.7 Operation principle Overfrequency protection SAPTOF (81) is used to detect high power system frequency. SAPTOF (81) has a settable definite time delay. If the frequency remains above the set value for a time period greater than the set time delay the TRIP signal is issued. To avoid an unwanted TRIP due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function, that is, if the voltage is lower than the set blocking voltage in the preprocessing function,...
  • Page 332: Time Delay

    Section 10 1MRK 502 048-UUS A Frequency protection 10.2.7.2 Time delay The time delay for SAPTOF (81) is a settable definite time delay, specified by the setting tDelay. If the PICKUP condition frequency ceases during the delay time, and is not fulfilled again within a defined reset time, the PICKUP output is reset.
  • Page 333: Technical Data

    Section 10 1MRK 502 048-UUS A Frequency protection 10.2.8 Technical data Table 193: SAPTOF (81) technical data Function Range or value Accuracy Operate value, pickup function (35.00-75.00) Hz ± 2.0 mHz at symmetrical three- phase voltage Reset ratio >0.999 Operate time, pickup function At 50 Hz: 200 ms typically at f -0.5 Hz to f +0.5 Hz...
  • Page 334: Function Block

    Section 10 1MRK 502 048-UUS A Frequency protection 10.3.3 Function block SAPFRC (81) V3P* TRIP BLOCK PICKUP RESTORE BLKDMAGN ANSI09000281-1-en.vsd ANSI09000281 V1 EN Figure 154: SAPFRC (81) function block 10.3.4 Signals Table 194: SAPFRC (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs...
  • Page 335: Operation Principle

    Section 10 1MRK 502 048-UUS A Frequency protection 10.3.6 Operation principle Rate-of-change frequency protection SAPFRC (81) is used to detect fast power system frequency changes at an early stage. It (81) has a settable definite time delay.To avoid an unwanted trip due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function that is, if the voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no PICKUP or TRIP signal is issued.
  • Page 336: Design

    Section 10 1MRK 502 048-UUS A Frequency protection 10.3.6.3 Design BLOCK BLOCK freqNotValid BLKDMAGN Pickup Rate-of-Change & Comparator of Frequency Trip Output PICKUP Definite Time Delay [PUFreqGrad<0 PICKUP Logic tTrip df/dt < PUFreqGrad] [PUFreqGrad>0 TRIP df/dt > PUFreqGrad] Then PICKUP 100 ms Frequency Comparator...
  • Page 337: Fuse Failure Supervision Sddrfuf

    Section 11 1MRK 502 048-UUS A Secondary system supervision Section 11 Secondary system supervision 11.1 Fuse failure supervision SDDRFUF 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fuse failure supervision SDDRFUF 11.1.2 Functionality The aim of the fuse failure supervision function SDDRFUF is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid inadvertent operations that otherwise might occur.
  • Page 338: Function Block

    Section 11 1MRK 502 048-UUS A Secondary system supervision 11.1.3 Function block SDDRFUF I3P* BLKZ V3P* BLKV BLOCK DLD1PH MCBOP DLD3PH ANSI08000220-1-en.vsd ANSI08000220 V1 EN Figure 156: SDDRFUF function block 11.1.4 Signals Table 198: SDDRFUF Input signals Name Type Default Description GROUP Three phase group signal for current inputs...
  • Page 339: Settings

    Section 11 1MRK 502 048-UUS A Secondary system supervision 11.1.5 Settings Table 200: SDDRFUF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Disable/Enable Operation Enabled OpModeSel Disabled V0I0 Operating mode selection V2I2 V0I0 V0I0 OR V2I2 V0I0 AND V2I2 OptimZsNs 3V0PU...
  • Page 340: Monitored Data

    Section 11 1MRK 502 048-UUS A Secondary system supervision 11.1.6 Monitored data Table 202: SDDRFUF Monitored data Name Type Values (Range) Unit Description REAL Magnitude of zero sequence current REAL Magnitude of negative sequence current REAL Magnitude of zero sequence voltage REAL Magnitude of negative...
  • Page 341: Delta Current And Delta Voltage Detection

    Section 11 1MRK 502 048-UUS A Secondary system supervision Sequence Detection 3I0PU CurrZeroSeq Zero sequence filter CurrNegSeq a>b 100 ms Negative sequence filter FuseFailDetZeroSeq a>b 100 ms 3I2PU FuseFailDetNegSeq 3V0PU VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3V2PU ANSI10000036-2-en.vsd ANSI10000036 V2 EN...
  • Page 342 Section 11 1MRK 502 048-UUS A Secondary system supervision • The magnitude of the phase-ground voltage has been above VPPU for more than 1.5 cycle • The magnitude of DV is higher than the setting DVPU • The magnitude of DI is below the setting DIPU and at least one of the following conditions are fulfilled: •...
  • Page 343 Section 11 1MRK 502 048-UUS A Secondary system supervision DVDI Detection DVDI detection Phase 1 One cycle delay |DI| a>b DIPU One cycle delay |DV| a>b DVPU a>b 20 ms 1.5 cycle VPPU DVDI detection Phase 2 Same logic as for phase 1 DVDI detection Phase 3 Same logic as for phase 1 a<b...
  • Page 344: Dead Line Detection

    Section 11 1MRK 502 048-UUS A Secondary system supervision 11.1.7.3 Dead line detection A simplified diagram for the functionality is found in figure 159. A dead phase condition is indicated if both the voltage and the current in one phase is below their respective setting values VDLDPU and IDLDPU.
  • Page 345 Section 11 1MRK 502 048-UUS A Secondary system supervision • V0I0 OR V2I2. Both negative and zero sequence is activated and working in parallel in an OR-condition. • V0I0 AND V2I2. Both negative and zero sequence is activated and working in series (AND-condition for operation).
  • Page 346 Section 11 1MRK 502 048-UUS A Secondary system supervision of MCBOP signal to prevent the unwanted operation of voltage dependent function due to non simultaneous closing of the main contacts of the miniature circuit breaker. The input signal 89b is supposed to be connected via a terminal binary input to the N.C. auxiliary contact of the line disconnector.
  • Page 347 Section 11 1MRK 502 048-UUS A Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK All VP < VSealInPU SealIn = Enabled Any VP < VsealInPU FuseFailDetDVDI OpDVDI = Enabled 5 sec FuseFailDetZeroSeq FuseFailDetNegSeq V2I2 V0I0...
  • Page 348: Technical Data

    Section 11 1MRK 502 048-UUS A Secondary system supervision Figure 160: Simplified logic diagram for fuse failure supervision function, Main logic 11.1.8 Technical data Table 203: SDDRFUF technical data Function Range or value Accuracy Operate voltage, zero sequence (1-100)% of VBase ±...
  • Page 349: Function Block

    Section 11 1MRK 502 048-UUS A Secondary system supervision 11.2.3 Function block GUID-6F85BD70-4D18-4A00-A410-313233025F3A V2 EN Figure 161: Function block 11.2.4 Signals Table 204: TCSSCBR Input signals Name Type Default Description TCS_STATE BOOLEAN Trip circuit fail indication from I/O-card BLOCK BOOLEAN Block of function Table 205: TCSSCBR Output signals...
  • Page 350: Technical Data

    Section 11 1MRK 502 048-UUS A Secondary system supervision TCS_STATE status Timer ALARM BLOCK ANSI11000289 V1 EN Figure 162: Functional module diagram Trip circuit supervision generates a current of approximately 1.0 mA through the supervised circuit. It must be ensured that this current will not cause a latch up of the controlled object.
  • Page 351: Synchronism Check, Energizing Check, And Synchronizing Sesrsyn (25)

    Section 12 1MRK 502 048-UUS A Control Section 12 Control 12.1 Synchronism check, energizing check, and synchronizing SESRSYN (25) 12.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Synchrocheck, energizing check, and SESRSYN synchronizing sc/vc SYMBOL-M V1 EN 12.1.2 Functionality...
  • Page 352: Function Block

    Section 12 1MRK 502 048-UUS A Control However this function can not be used to automatically synchronize the generator to the network. 12.1.3 Function block SESRSYN (25) V3PB1* SYNOK V3PB2* AUTOSYOK V3PL1* AUTOENOK V3PL2* MANSYOK BLOCK MANENOK BLKSYNCH TSTSYNOK BLKSC TSTAUTSY BLKENERG TSTMANSY...
  • Page 353 Section 12 1MRK 502 048-UUS A Control Name Type Default Description BLKSYNCH BOOLEAN Block synchronizing BLKSC BOOLEAN Block synchro check BLKENERG BOOLEAN Block energizing check BUS1_OP BOOLEAN Open status for CB or disconnector connected to bus1 BUS1_CL BOOLEAN Close status for CB and disconnector connected to bus1 BUS2_OP BOOLEAN Open status for CB or disconnector connected to bus2...
  • Page 354 Section 12 1MRK 502 048-UUS A Control Name Type Description TSTENOK BOOLEAN Energizing check OK test output VSELFAIL BOOLEAN Selected voltage transformer fuse failed B1SEL BOOLEAN Bus1 selected B2SEL BOOLEAN Bus2 selected L1SEL BOOLEAN Line1 selected L2SEL BOOLEAN Line2 selected SYNPROGR BOOLEAN Synchronizing in progress...
  • Page 355: Settings

    Section 12 1MRK 502 048-UUS A Control 12.1.5 Settings Table 210: SESRSYN (25) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled CBConfig No voltage sel. No voltage sel. Select CB configuration Double bus 1 1/2 bus CB 1 1/2 bus alt.
  • Page 356 Section 12 1MRK 502 048-UUS A Control Name Values (Range) Unit Step Default Description AutoEnerg Disabled DLLB Automatic energizing check mode DLLB DBLL Both ManEnerg Disabled Both Manual energizing check mode DLLB DBLL Both ManEnergDBDL Disabled Disabled Manual dead bus, dead line energizing Enabled tAutoEnerg 0.000 - 60.000...
  • Page 357: Monitored Data

    Section 12 1MRK 502 048-UUS A Control 12.1.6 Monitored data Table 212: SESRSYN (25) Monitored data Name Type Values (Range) Unit Description VDIFFME REAL Calculated difference of voltage in p.u of set voltage base value FRDIFFME REAL Calculated difference of frequency PHDIFFME REAL...
  • Page 358: Synchronism Check

    Section 12 1MRK 502 048-UUS A Control 12.1.7.2 Synchronism check The voltage difference, frequency difference and phase angle difference values are calculated by the SESRSYN function and are available for the synchronism check function for evaluation. If the bus voltage is connected as phase-phase and the line voltage as phase-neutral (or the opposite), this need to be compensated.
  • Page 359: Synchronizing

    Section 12 1MRK 502 048-UUS A Control Note! Similar logic for Manual Synchrocheck. OperationSC = Enabled TSTSC BLKSC BLOCK AUTOSYOK 0-tSCA VDiffSC 50 ms Bus voltage >80% of GblBaseSelBus VOKSC Line voltage >80% of GblBaseSelLine VDIFFSC FRDIFFA FreqDiffA PHDIFFA PhaseDiffA VDIFFME voltageDifferenceValue FRDIFFME...
  • Page 360 Section 12 1MRK 502 048-UUS A Control voltage difference between bus and line is acceptable, the measured values are also compared with the set values for acceptable frequency FreqDiffMax and FreqDiffMin, rate of change of frequency FreqRateChange and phase angle, which has to be smaller than the internally preset value of 15 degrees.
  • Page 361: Energizing Check

    Section 12 1MRK 502 048-UUS A Control 12.1.7.4 Energizing check Voltage values are measured in the IED and are available for evaluation by the Synchronism check function. The function measures voltages on the busbar and the line to verify whether they are live or dead.
  • Page 362: Voltage Selection

    Section 12 1MRK 502 048-UUS A Control 12.1.7.6 Voltage selection The voltage selection module including supervision of included voltage transformers for the different arrangements is a basic part of the SESRSYN (25) function and determines the voltages fed to the Synchronizing, Synchrocheck and Energizing check functions. This includes the selection of the appropriate Line and Bus voltages and MCB supervision.
  • Page 363: Voltage Selection For A Breaker-And-A-Half Circuit Breaker Arrangement

    Section 12 1MRK 502 048-UUS A Control BUS1_OP B1SEL BUS1_CL BUS2_OP B2SEL BUS2_CL invalidSelection busVoltage bus1Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF BLOCK en05000779_2_ansi.vsd ANSI05000779 V2 EN Figure 166: Logic diagram for the voltage selection function of a single circuit breaker with double busbars 12.1.7.8 Voltage selection for a breaker-and-a-half circuit breaker arrangement Note that with breaker-and-a-half schemes three Synchronism check functions must be...
  • Page 364 Section 12 1MRK 502 048-UUS A Control the selected Line voltage as a reference to the fixed Bus 1 voltage, which indicates B1SEL. The fuse supervision is connected to VL1OK-VL1FF, VL2OK-VL2FF and with alternative Healthy or Failing MCB signals depending on what is available from each MCB.
  • Page 365 Section 12 1MRK 502 048-UUS A Control LINE1_OP L1SEL LINE1_CL BUS1_OP L2SEL BUS1_CL B2SEL LINE2_OP invalidSelection LINE2_CL BUS2_OP BUS2_CL lineVoltage line1Voltage line2Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000780_2_ansi.vsd ANSI05000780 V2 EN Figure 167: Simplified logic diagram for the voltage selection function for a bus circuit breaker in a breaker-and-a- half arrangement Technical manual...
  • Page 366 Section 12 1MRK 502 048-UUS A Control LINE1_OP L1SEL LINE1_CL B1SEL BUS1_OP BUS1_CL line1Voltage busVoltage bus1Voltage LINE2_OP L2SEL LINE2_CL B2SEL invalidSelection BUS2_OP BUS2_CL lineVoltage line2Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000781_2_ansi.vsd ANSI05000781 V2 EN Figure 168: Simplified logic diagram for the voltage selection function for the tie circuit breaker in breaker-and-a- half arrangement.
  • Page 367: Technical Data

    Section 12 1MRK 502 048-UUS A Control 12.1.8 Technical data Table 213: SESRSYN (25) technical data Function Range or value Accuracy Phase shift, j (-180 to 180) degrees line Voltage ratio, V 0.500 - 2.000 line Reset ratio, synchronism check >...
  • Page 368: Apparatus Control

    Section 12 1MRK 502 048-UUS A Control 12.2 Apparatus control 12.2.1 Functionality The apparatus control function APC8 for up to 8 apparatuses is used for control and supervision of circuit breakers, disconnectors and grounding switches within a bay. Permission to operate is given after evaluation of conditions from other functions such as interlocking, synchronism check, operator place selection and external or internal blockings.
  • Page 369: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.2.2.3 Function block SCSWI BLOCK EXE_OP PSTO EXE_CL L_SEL SELECTED L_OPEN START_SY L_CLOSE POSITION AU_OPEN OPENPOS AU_CLOSE CLOSEPOS BL_CMD CMD_BLK RES_EXT L_CAUSE SY_INPRO POS_INTR SYNC_OK XOUT EN_OPEN EN_CLOSE XPOS* IEC09000087_1_en.vsd IEC09000087 V1 EN Figure 169: SCSWI function block 12.2.2.4...
  • Page 370: Settings

    Section 12 1MRK 502 048-UUS A Control Name Type Description POSITION INTEGER Position indication OPENPOS BOOLEAN Open position indication CLOSEPOS BOOLEAN Closed position indication CMD_BLK BOOLEAN Commands are blocked L_CAUSE INTEGER Latest value of the error indication during command POS_INTR BOOLEAN Stopped in intermediate position XOUT...
  • Page 371: Settings

    Section 12 1MRK 502 048-UUS A Control Name Type Default Description POSOPEN BOOLEAN Signal for open position of apparatus from I/O POSCLOSE BOOLEAN Signal for close position of apparatus from I/O TR_OPEN BOOLEAN Signal for open position of truck from I/O TR_CLOSE BOOLEAN Signal for close position of truck from I/O...
  • Page 372: Circuit Switch Sxswi

    Section 12 1MRK 502 048-UUS A Control 12.2.4 Circuit switch SXSWI 12.2.4.1 Signals Table 220: SXSWI Input signals Name Type Default Description BLOCK BOOLEAN Block of function LR_SWI BOOLEAN Local/Remote switch indication from switchyard OPEN BOOLEAN Pulsed signal used to immediately open the switch CLOSE BOOLEAN Pulsed signal used to immediately close the switch...
  • Page 373: Settings

    Section 12 1MRK 502 048-UUS A Control 12.2.4.2 Settings Table 222: SXSWI Non group settings (basic) Name Values (Range) Unit Step Default Description tStartMove 0.000 - 60.000 0.001 3.000 Supervision time for the apparatus to move after a command tIntermediate 0.000 - 60.000 0.001 15.000...
  • Page 374: Signals

    Section 12 1MRK 502 048-UUS A Control 12.2.5.4 Signals Table 223: QCBAY Input signals Name Type Default Description LR_OFF BOOLEAN External Local/Remote switch is in Off position LR_LOC BOOLEAN External Local/Remote switch is in Local position LR_REM BOOLEAN External Local/Remote switch is in Remote position LR_VALID BOOLEAN Data representing the L/R switch position is valid...
  • Page 375: Function Block

    Section 12 1MRK 502 048-UUS A Control block. A parameter in function block LOCREM is set to choose if the switch signals are coming from the local HMI or from an external hardware switch connected via binary inputs. 12.2.6.3 Function block LOCREM CTRLOFF LOCCTRL...
  • Page 376: Local Remote Control Locremctrl

    Section 12 1MRK 502 048-UUS A Control 12.2.7 Local remote control LOCREMCTRL 12.2.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local remote control LOCREMCTRL 12.2.7.2 Functionality The signals from the local HMI or from an external local/remote switch are applied via the function blocks LOCREM and LOCREMCTRL to the Bay control QCBAY function block.
  • Page 377: Settings

    Section 12 1MRK 502 048-UUS A Control Name Type Default Description PSTO4 INTEGER PSTO input channel 4 PSTO5 INTEGER PSTO input channel 5 PSTO6 INTEGER PSTO input channel 6 PSTO7 INTEGER PSTO input channel 7 PSTO8 INTEGER PSTO input channel 8 PSTO9 INTEGER PSTO input channel 9...
  • Page 378: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.2.8.2 Function block SELGGIO SELECT1 RESERVED SELECT2 SELECT3 SELECT4 SELECT5 SELECT6 SELECT7 SELECT8 SELECT9 SELECT10 SELECT11 SELECT12 SELECT13 SELECT14 SELECT15 SELECT16 IEC09000084_1_en.vsd IEC09000084 V1 EN Figure 173: SELGGIO function block 12.2.8.3 Signals Table 231: SELGGIO Input signals Name Type...
  • Page 379: Settings

    Section 12 1MRK 502 048-UUS A Control 12.2.8.4 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 12.2.9 Operation principle 12.2.9.1 Switch controller SCSWI The Switch controller (SCSWI) is provided with verification checks for the select - execute sequence, that is, checks the conditions prior each step of the operation.
  • Page 380 Section 12 1MRK 502 048-UUS A Control In the supervision phase, the switch controller function evaluates the "cause" values from the switch modules Circuit breaker (SXCBR)/ Circuit switch (SXSWI). At error the "cause" value with highest priority is shown. Blocking principles The blocking signals are normally coming from the bay control function (QCBAY) and via the IEC 61850 communication from the operator place.
  • Page 381 Section 12 1MRK 502 048-UUS A Control SCSWI SXCBR EXE_CL CLOSE SYNC_OK START_SY SY_INPRO SESRSYN CLOSECMD Synchro Synchronizing check function ANSI09000209-1-en.vsd ANSI09000209 V1 EN Figure 174: Example of interaction between SCSWI, SESRSYN (25) (synchronism check and synchronizing function) and SXCBR function Time diagrams The Switch controller (SCSWI) function has timers for evaluating different time supervision conditions.
  • Page 382 Section 12 1MRK 502 048-UUS A Control execute command phase A open close phase B open close open phase C close command termination phase A command termination phase B command termination phase C command termination circuit breaker open close t1>tExecutionFB, then tExecutionFB long-operation-time in timer...
  • Page 383: Bay Control Qcbay

    Section 12 1MRK 502 048-UUS A Control Error handling Depending on the error that occurs during the command sequence, the error signal will be set with a value. Table describes vendor specific cause values in addition to these specified in IEC 61850-8-1 standard. The list of values of the “cause” are in order of priority.
  • Page 384 Section 12 1MRK 502 048-UUS A Control for the local/remote switch is not valid the PSTO output will always be set to faulty state (3), which means no possibility to operate. To adapt the signals from the local HMI or from an external local/remote switch, the function blocks LOCREM and LOCREMCTRL are needed and connected to QCBAY.
  • Page 385: Local Remote/Local Remote Control Locrem/Locremctrl

    Section 12 1MRK 502 048-UUS A Control The switching of the Local/Remote switch requires at least system operator level. The password will be requested at an attempt to operate if authority levels have been defined in the IED. Otherwise the default authority level, SuperUser, can handle the control without LogOn.
  • Page 386: Interlocking

    Section 12 1MRK 502 048-UUS A Control 12.3 Interlocking 12.3.1 Functionality The interlocking functionality blocks the possibility to operate high-voltage switching devices, for instance when a disconnector is under load, in order to prevent material damage and/or accidental human injury. Each control IED has interlocking functions for different switchyard arrangements, each handling the interlocking of one bay.
  • Page 387: Logic Diagram

    Section 12 1MRK 502 048-UUS A Control 12.3.2.4 Logic diagram The function contains logic to enable the open and close commands respectively if the interlocking conditions are fulfilled. That means also, if the switch being controlled has its position defined as open (via POSOPEN) for example, then the appropriate enable signal output (in this case EN_OPEN) is false.
  • Page 388: Settings

    Section 12 1MRK 502 048-UUS A Control 12.3.2.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 12.3.3 Interlocking for busbar grounding switch BB_ES (3) 12.3.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 389: Logic Diagram

    Section 12 1MRK 502 048-UUS A Control 12.3.3.4 Logic diagram BB_ES VP_BB_DC 89GREL BB_DC_OP 89GITL EXDU_BB 89G_OP BBGSOPTR 89G_CL BBGSCLTR en04000546_ansi.vsd ANSI04000546 V1 EN 12.3.3.5 Signals Table 237: BB_ES (3) Input signals Name Type Default Description 89G_OP BOOLEAN Busbar grounding switch 89G is in open position 89G_CL BOOLEAN Busbar grounding switch 89G is in closed position...
  • Page 390: Identification

    Section 12 1MRK 502 048-UUS A Control 12.3.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for bus-section breaker A1A2_BS 12.3.4.2 Functionality The interlocking for bus-section breaker (A1A2_BS ,3) function is used for one bus- section circuit breaker between section 1 and 2 according to figure 183.
  • Page 391: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.3.4.3 Function block A1A2_BS (3) 152_OP 152OPREL 152_CL 152OPITL 189_OP 152CLREL 189_CL 152CLITL 289_OP 189REL 289_CL 189ITL 389G_OP 289REL 389G_CL 289ITL 489G_OP 389GREL 489G_CL 389GITL S189G_OP 489GREL S189G_CL 489GITL S289G_OP S1S2OPTR S289G_CL S1S2CLTR BBTR_OP 189OPTR VP_BBTR...
  • Page 392: Logic Diagram

    Section 12 1MRK 502 048-UUS A Control 12.3.4.4 Logic diagram A1A2_BS 152_OP 152_CL VP152 189_OP 189_CL VP189 289_OP 289_CL VP289 389G_OP 389G_CL VP389G 489G_OP 489G_CL VP489G S1189G_OP S1189G_CL VPS1189G S2289G_OP S2289G_CL VPS2289G VP189 189_OP 152OPREL 152O_EX1 152OPITL VP289 289_OP 152O_EX2 VP_BBTR BBTR_OP EXDU_12...
  • Page 393: Signals

    Section 12 1MRK 502 048-UUS A Control VP152 VP389G 289REL VP489G 289ITL VPS2289G 152_OP 389G_OP 489G_OP S2289G_OP EXDU_89G 289_EX1 VP489G VPS2289G 489G_CL S2289G_CL EXDU_89G 289_EX2 389GREL VP189 VP289 389GITL 189_OP 489GREL 289_OP 489GITL 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR...
  • Page 394 Section 12 1MRK 502 048-UUS A Control Name Type Default Description S289G_CL BOOLEAN S289G on bus section 2 is in closed position BBTR_OP BOOLEAN No busbar transfer is in progress VP_BBTR BOOLEAN Status are valid for apparatuses involved in the busbar transfer EXDU_12 BOOLEAN...
  • Page 395: Settings

    Section 12 1MRK 502 048-UUS A Control Name Type Description VPS1S2TR BOOLEAN Status of the apparatuses between bus section 1 and 2 are valid VP189TR BOOLEAN Switch status of 189 is valid (open or closed) VP289TR BOOLEAN Switch status of 289 is valid (open or closed) 12.3.4.6 Settings The function does not have any settings available in Local HMI or Protection and Control...
  • Page 396: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.3.5.3 Function block A1A2_DC (3) 089_OP 089OPREL 089_CL 089OPITL S189G_OP 089CLREL S189G_CL 089CLITL S289G_OP DCOPTR S289G_CL DCCLTR S1DC_OP VPDCTR S2DC_OP VPS1_DC VPS2_DC EXDU_89G EXDU_BB 089C_EX1 089C_EX2 089O_EX1 089O_EX2 089O_EX3 ANSI09000067-1-en.vsd ANSI09000067 V1 EN Figure 186: A1A2_DC (3) function block 12.3.5.4...
  • Page 397: Signals

    Section 12 1MRK 502 048-UUS A Control ANSI11000276-1-vsd ANSI11000276 V1 EN 12.3.5.5 Signals Table 241: A1A2_DC (3) Input signals Name Type Default Description 089_OP BOOLEAN 089 is in open position 089_CL BOOLEAN 089 is in closed position S189G_OP BOOLEAN S189G on bus section 1 is in open position S189G_CL BOOLEAN S189G on bus section 1 is in closed position...
  • Page 398: Settings

    Section 12 1MRK 502 048-UUS A Control Table 242: A1A2_DC (3) Output signals Name Type Description 089OPREL BOOLEAN Opening of 089 is allowed 089OPITL BOOLEAN Opening of 089 is not allowed 089CLREL BOOLEAN Closing of 089 is allowed 089CLITL BOOLEAN Closing of 089 is not allowed DCOPTR BOOLEAN...
  • Page 399 Section 12 1MRK 502 048-UUS A Control WA1 (A) WA2 (B) WA7 (C) 2089 189G 289G en04000514_ansi.vsd ANSI04000514 V1 EN Figure 187: Switchyard layout ABC_BC (3) The interlocking functionality in 650 series can not handle the transfer bus WA7(C). Technical manual...
  • Page 400: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.3.6.3 Function block ABC_BC (3) 152_OP 152OPREL 152_CL 152OPITL 189_OP 152CLREL 189_CL 152CLITL 289_OP 189REL 289_CL 189ITL 789_OP 289REL 789_CL 289ITL 2089_OP 789REL 2089_CL 789ITL 189G_OP 2089REL 189G_CL 2089ITL 289G_OP 189GREL 289G_CL 189GITL 1189G_OP 289GREL 1189G_CL...
  • Page 401: Logic Diagram

    Section 12 1MRK 502 048-UUS A Control 12.3.6.4 Logic diagram ABC_BC 152_OP 152_CL VP152 189_OP 189_CL VP189 2089_OP 2089_CL VP2089 789_OP 789_CL VP789 289_OP 289_CL VP289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G 7189G_OP 7189G_CL VP7189G VP189 152OPREL...
  • Page 402 Section 12 1MRK 502 048-UUS A Control VP152 VP189 289REL VP189G 289ITL VP289G VP2189G 152_OP 189_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189 VP_BC_12 189_CL BC_12_CL EXDU_BC 289_EX2 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX3 en04000535_ansi.vsd ANSI04000535 V1 EN VP152 VP2089 789REL VP189G 789ITL VP289G...
  • Page 403: Signals

    Section 12 1MRK 502 048-UUS A Control VP189 189GREL VP2089 189GITL VP789 289GREL VP289 289GITL 189_OP 2089_OP 789_OP 289_OP 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 2089_OP 22089OTR 289_OP 22089CTR VP2089 V22089TR VP289 789_OP 789OPTR 789_CL 789CLTR VP789 VP789TR 189_OP 1289OPTR 289_OP 1289CLTR VP189...
  • Page 404 Section 12 1MRK 502 048-UUS A Control Name Type Default Description 189G_CL BOOLEAN 189G is in closed position 289G_OP BOOLEAN 289G is in open position 289G_CL BOOLEAN 289G is in closed position 1189G_OP BOOLEAN Grounding switch 1189G on busbar WA1 is in open position 1189G_CL BOOLEAN...
  • Page 405 Section 12 1MRK 502 048-UUS A Control Table 244: ABC_BC (3) Output signals Name Type Description 152OPREL BOOLEAN Opening of 152 is allowed 152OPITL BOOLEAN Opening of 152 is not allowed 152CLREL BOOLEAN Closing of 152 is allowed 152CLITL BOOLEAN Closing of 152 is not allowed 189REL BOOLEAN...
  • Page 406: Settings

    Section 12 1MRK 502 048-UUS A Control Name Type Description V22089TR BOOLEAN Switch status of 289 and 2089 are valid (open or closed) VP789TR BOOLEAN Switch status of 789 is valid (open or closed) VP1289TR BOOLEAN Switch status of 189 and 289 are valid (open or closed) VPBC12TR BOOLEAN Status of bus coupler apparatuses between bus1 and...
  • Page 407 Section 12 1MRK 502 048-UUS A Control WA1 (A) WA2 (B) 189G 189G 289G 289G 389G 389G BH_LINE_B BH_LINE_A 6189 6289 289G 189G 989G 989G BH_CONN en04000513_ansi.vsd ANSI04000513 V1 EN Figure 189: Switchyard layout breaker-and-a-half Three types of interlocking modules per diameter are defined. BH_LINE_A (3) and BH_LINE_B (3) are the connections from a line to a busbar.
  • Page 408: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.3.7.3 Function block BH_CONN (3) 152_OP 152CLREL 152_CL 152CLITL 6189_OP 6189REL 6189_CL 6189ITL 6289_OP 6289REL 6289_CL 6289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 1389G_OP 1389G_CL 2389G_OP 2389G_CL 6189_EX1 6189_EX2 6289_EX1 6289_EX2 ANSI09000072-1-en.vsd ANSI09000072 V1 EN Figure 190:...
  • Page 409 Section 12 1MRK 502 048-UUS A Control BH_LINE_A (3) 152_OP 152CLREL 152_CL 152CLITL 689_OP 689REL 689_CL 689ITL 189_OP 189REL 189_CL 189ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 389GREL 389G_CL 389GITL 989_OP 989REL 989_CL 989ITL 989G_OP 989GREL 989G_CL 989GITL C152_OP 189OPTR...
  • Page 410 Section 12 1MRK 502 048-UUS A Control BH_LINE_B (3) 152_OP 152CLREL 152_CL 152CLITL 689_OP 689REL 689_CL 689ITL 289_OP 289REL 289_CL 289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 389GREL 389G_CL 389GITL 989_OP 989REL 989_CL 989ITL 989G_OP 989GREL 989G_CL 989GITL C152_OP 289OPTR...
  • Page 411: Logic Diagrams

    Section 12 1MRK 502 048-UUS A Control 12.3.7.4 Logic diagrams BH_CONN 152_OP 152_CL VP152 6189_OP 6189_CL VP6189 6289_OP 6289_CL VP6289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 1389G_OP 1389G_CL VP1389G 2389G_OP 2389G_CL VP2389G VP6189 152CLREL VP6289 152CLITL VP152 VP189G 6189REL VP289G 61891ITL VP1389G 152_OP...
  • Page 412 Section 12 1MRK 502 048-UUS A Control BH_LINE_A 152_OP 152_CL VP152 189_OP 189_CL VP189 689_OP 689_CL VP689 989G_OP 989G_CL VP989G 989_OP 989_CL VP989 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G C152_OP C152_CL VPC152 C189G_OP C189G_CL VPC189G C289G_OP C289G_CL VPC289G C6189_OP C6189_CL...
  • Page 413 Section 12 1MRK 502 048-UUS A Control VP152 VP189G 189REL VP289G 189ITL VP1189G 152_OP 189G_OP 289G_OP 1189G_OP EXDU_89G 189_EX1 VP189G VP1189G 189G_CL 1189G_CL EXDU_89G 189_EX2 VP189 189GREL VP689 189GITL 189_OP 289GREL 689_OP 289GITL VP689 VP989 389GREL VPC6189 389GITL 689_OP 989_OP C6189_OP VP152 989REL...
  • Page 414 Section 12 1MRK 502 048-UUS A Control BH_LINE_B 152_OP 152_CL VP152 289_OP 289_CL VP289 689_OP 689_CL VP689 989G_OP VP989G 989G_CL 989_OP 989_CL VP989 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G C152_OP VPC152 C152_CL C189G_OP C189G_CL VPC189G C289G_OP C289G_CL VPC289G C6289_OP C6289_CL...
  • Page 415 Section 12 1MRK 502 048-UUS A Control VP152 VP189G 289REL VP289G 289ITL VP2189G 152_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX2 VP289 189GREL VP689 189GITL 289_OP 289GREL 689_OP 289GITL VP689 VP989 389GREL VPC6289 389GITL 689_OP 989_OP C6289_OP VP152 989REL...
  • Page 416: Signals

    Section 12 1MRK 502 048-UUS A Control 12.3.7.5 Signals Table 245: BH_CONN (3) Input signals Name Type Default Description 152_OP BOOLEAN 152 is in open position 152_CL BOOLEAN 152 is in closed position 6189_OP BOOLEAN 6189 is in open position 6189_CL BOOLEAN 6189 is in closed position...
  • Page 417 Section 12 1MRK 502 048-UUS A Control Name Type Default Description 989_OP BOOLEAN 989 is in open position 989_CL BOOLEAN 989 is in closed position 989G_OP BOOLEAN 989G is in open position 989G_CL BOOLEAN 989G is in closed position C152_OP BOOLEAN 152 in module BH_CONN is in open position C152_CL...
  • Page 418 Section 12 1MRK 502 048-UUS A Control Name Type Default Description 689_CL BOOLEAN 689 is in closed position 289_OP BOOLEAN 289 is in open position 289_CL BOOLEAN 289 is in closed position 189G_OP BOOLEAN 189G is in open position 189G_CL BOOLEAN 189G is in closed position 289G_OP...
  • Page 419 Section 12 1MRK 502 048-UUS A Control Name Type Default Description 989_EX5 BOOLEAN External condition for apparatus 989 989_EX6 BOOLEAN External condition for apparatus 989 989_EX7 BOOLEAN External condition for apparatus 989 Table 248: BH_CONN (3) Output signals Name Type Description 152CLREL BOOLEAN...
  • Page 420: Settings

    Section 12 1MRK 502 048-UUS A Control Name Type Description 189OPTR BOOLEAN 189 is in open position 189CLTR BOOLEAN 189 is in closed position VP189TR BOOLEAN Switch status of 189 is valid (open or closed) Table 250: BH_LINE_B (3) Output signals Name Type Description...
  • Page 421: Identification

    Section 12 1MRK 502 048-UUS A Control 12.3.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for double CB bay DB_BUS_A Interlocking for double CB bay DB_BUS_B Interlocking for double CB bay DB_LINE 12.3.8.2 Functionality The interlocking for a double busbar double circuit breaker bay including DB_BUS_A (3), DB_BUS_B (3) and DB_LINE (3) functions are used for a line connected to a double...
  • Page 422: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.3.8.3 Function block DB_BUS_A (3) 152_OP 152CLREL 152_CL 152CLITL 189_OP 6189REL 189_CL 6189ITL 6189_OP 189REL 6189_CL 189ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 189OPTR 389G_CL 189CLTR 1189G_OP VP189TR 1189G_CL EXDU_89G 6189_EX1 6189_EX2 189_EX1...
  • Page 423 Section 12 1MRK 502 048-UUS A Control DB_LINE (3) 152_OP 989REL 152_CL 989ITL 252_OP 389GREL 252_CL 389GITL 6189_OP 989GREL 6189_CL 989GITL 189G_OP 189G_CL 289G_OP 289G_CL 6289_OP 6289_CL 489G_OP 489G_CL 589G_OP 589G_CL 989_OP 989_CL 389G_OP 389G_CL 989G_OP 989G_CL VOLT_OFF VOLT_ON 989_EX1 989_EX2 989_EX3 989_EX4...
  • Page 424: Logic Diagrams

    Section 12 1MRK 502 048-UUS A Control 12.3.8.4 Logic diagrams DB_BUS_A 152_OP 152_CL VP152 6189_OP 6189_CL VP6189 189_OP 189_CL VP189 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G 1189G_OP 1189G_CL VP1189G VP6189 152CLREL VP189 152CLITL VP152 VP189G 6189REL VP289G 6189ITL VP389G 152_OP...
  • Page 425 Section 12 1MRK 502 048-UUS A Control DB_BUS_B 252_OP 252_CL VP252 6289_OP 6289_CL VP6289 289_OP 289_CL VP289 489G_OP 489G_CL VP489G 589G_OP 589G_CL VP589G 389G_OP 389G_CL VP389G 2189G_OP 2189G_CL VP2189G VP6289 252CLREL VP289 252CLITL VP252 VP489G 6289REL VP589G 6289ITL VP389G 252_OP 489G_OP 589G_OP 389G_OP...
  • Page 426 Section 12 1MRK 502 048-UUS A Control DB_LINE 152_OP 152_CL VP152 252_OP 252_CL VP252 6189_OP 6189_CL VP6189 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 6289_OP 6289_CL VP6289 489G_OP 489G_CL VP489G 589G_OP 589G_CL VP589G 989_OP 989_CL VP989 389G_OP 389G_CL VP389G 989G_OP 989G_CL VP989G VOLT_OFF VOLT_ON...
  • Page 427: Signals

    Section 12 1MRK 502 048-UUS A Control VP152 VP189G VP289G VP389G VP989G VP6289 152_OP 189G_OP 289G_OP 389G_OP 989G_OP 6289_OP 989_EX2 VP252 VP6189 VP389G VP489G VP589G VP989G 252_OP 6189_OP 389G_OP 489G_OP 589G_OP 989G_OP 989_EX3 VP389G VP989G VP6189 VP6289 389G_OP 989G_OP 6189_OP 6289_OP 989_EX4 VP389G...
  • Page 428 Section 12 1MRK 502 048-UUS A Control Name Type Default Description 6189_OP BOOLEAN 6189 is in open position 6189_CL BOOLEAN 6189 is in closed position 189G_OP BOOLEAN 189G is in open position 189G_CL BOOLEAN 189G is in closed position 289G_OP BOOLEAN 289G is in open position 289G_CL...
  • Page 429 Section 12 1MRK 502 048-UUS A Control Name Type Default Description EXDU_89G BOOLEAN No transmission error from bay containing grounding switch QC21 6289_EX1 BOOLEAN External condition for apparatus 6289 6289_EX2 BOOLEAN External condition for apparatus 6289 289_EX1 BOOLEAN External condition for apparatus 289 289_EX2 BOOLEAN External condition for apparatus 289...
  • Page 430 Section 12 1MRK 502 048-UUS A Control Name Type Default Description 989_EX3 BOOLEAN External condition for apparatus 989 989_EX4 BOOLEAN External condition for apparatus 989 989_EX5 BOOLEAN External condition for apparatus 989 Table 254: DB_BUS_A (3) Output signals Name Type Description 152CLREL BOOLEAN...
  • Page 431: Settings

    Section 12 1MRK 502 048-UUS A Control Table 256: DB_LINE (3) Output signals Name Type Description 989REL BOOLEAN Switching of 989 is allowed 989ITL BOOLEAN Switching of 989 is not allowed 389GREL BOOLEAN Switching of 389G is allowed 389GITL BOOLEAN Switching of 389G is not allowed 989GREL BOOLEAN...
  • Page 432 Section 12 1MRK 502 048-UUS A Control WA1 (A) WA2 (B) WA7 (C) 189G 289G 989G en04000478_ansi.vsd ANSI04000478 V1 EN Figure 197: Switchyard layout ABC_LINE (3) The interlocking functionality in 650 series can not handle the transfer bus WA7(C). Technical manual...
  • Page 433: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.3.9.3 Function block ABC_LINE (3) 152_OP 152CLREL 152_CL 152CLITL 989_OP 989REL 989_CL 989ITL 189_OP 189REL 189_CL 189ITL 289_OP 289REL 289_CL 289ITL 789_OP 789REL 789_CL 789ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 989G_OP 989GREL 989G_CL...
  • Page 434: Logic Diagram

    Section 12 1MRK 502 048-UUS A Control 12.3.9.4 Logic diagram ABC_LINE 152_OP 152_CL VP152 989_OP VP989 989_CL 152CLREL 189_OP 152CLITL 189_CL VP189 289_OP 289_CL VP289 789_OP 789_CL VP789 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 989G_OP 989G_CL VP989G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G...
  • Page 435 Section 12 1MRK 502 048-UUS A Control 189REL VP152 VP289 VP189G 189ITL VP289G VP1189G 152_OP 289_OP 189G_OP 289G_OP 1189G_OP EXDU_89G 189_EX1 VP289 VP_BC_12 289_CL BC_12_CL EXDU_BC 189_EX2 VP189G VP1189G 189G_CL 1189G_CL EXDU_89G 189EX3 en04000528_ansi.vsd ANSI04000528 V1 EN Technical manual...
  • Page 436 Section 12 1MRK 502 048-UUS A Control 289REL VP152 VP189 VP189G 289ITL VP289G VP2189G 152_OP 189_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189 VP_BC_12 QB1_CL BC_12_CL EXDU_BC 289_EX2 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX3 en04000529_ansi.vsd ANSI04000529 V1 EN Technical manual...
  • Page 437 Section 12 1MRK 502 048-UUS A Control VP989G 789REL VP7189G VP_BB7_D 789ITL VP_BC_17 VP_BC_27 989G_OP 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_17_OP BC_27_OP EXDU_BC 789_EX1 VP152 VP189 VP989G VP989 VP7189G VP_BB7_D VP_BC_17 152_CL 189_CL 989G_OP 989_CL 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_17_CL EXDU_BC 789_EX2 en04000530_ansi.vsd ANSI04000530 V1 EN...
  • Page 438 Section 12 1MRK 502 048-UUS A Control VP152 VP289 VP989G VP989 VP7189G VP_BB7_D VP_BC_27 152_CL 289_CL 989G_OP 989_CL 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_27_CL EXDU_BC 789_EX3 VP989G VP7189G 989G_CL 7189G_CL EXDU_89G 789_EX4 VP189 189GREL VP289 189GITL VP989 289GREL 189_OP 289GITL 289_OP 989_OP VP789 VP989...
  • Page 439: Signals

    Section 12 1MRK 502 048-UUS A Control 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR VP289 VP289TR 789_OP 789OPTR 789_CL 789CLTR VP789 VP789TR 189_OP 1289OPTR 289_OP 1289CLTR VP189 VP1289TR VP289 en04000532_ansi.vsd ANSI04000532 V1 EN 12.3.9.5 Signals Table 257: ABC_LINE (3) Input signals Name Type...
  • Page 440 Section 12 1MRK 502 048-UUS A Control Name Type Default Description 1189G_OP BOOLEAN Grounding switch 1189G on busbar WA1 is in open position 1189G_CL BOOLEAN Grounding switch 1189G on busbar WA1 is in closed position 2189G_OP BOOLEAN Grounding switch 2189G on busbar WA2 is in open position 2189G_CL BOOLEAN...
  • Page 441 Section 12 1MRK 502 048-UUS A Control Name Type Default Description 189_EX3 BOOLEAN External condition for apparatus 189 289_EX1 BOOLEAN External condition for apparatus 289 289_EX2 BOOLEAN External condition for apparatus 289 289_EX3 BOOLEAN External condition for apparatus 289 789_EX1 BOOLEAN External condition for apparatus 789 789_EX2...
  • Page 442: Settings

    Section 12 1MRK 502 048-UUS A Control Name Type Description VP289TR BOOLEAN Switch status of 289 is valid (open or closed) VP789TR BOOLEAN Switch status of 789 is valid (open or closed) VP1289TR BOOLEAN Switch status of 189 and 289 are valid (open or closed) 12.3.9.6 Settings The function does not have any settings available in Local HMI or Protection and Control...
  • Page 443 Section 12 1MRK 502 048-UUS A Control WA1 (A) WA2 (B) 189G AB_TRAFO 289G 389G 252 and 489G are not used in this interlocking 489G en04000515_ansi.vsd ANSI04000515 V1 EN Figure 199: Switchyard layout AB_TRAFO (3) Technical manual...
  • Page 444: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.3.10.3 Function block AB_TRAFO (3) 152_OP 152CLREL 152_CL 152CLITL 189_OP 189REL 189_CL 189ITL 289_OP 289REL 289_CL 289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389_OP 189OPTR 389_CL 189CLTR 489_OP 289OPTR 489_CL 289CLTR 389G_OP 1289OPTR 389G_CL...
  • Page 445: Logic Diagram

    Section 12 1MRK 502 048-UUS A Control 12.3.10.4 Logic diagram AB_TRAFO 152_OP 152_CL VP152 189_OP 189_CL VP189 289_OP 289_CL VP289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389_OP 389_CL VP389 489_OP 489_CL VP489 389G_OP 389G_CL VP389G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G VP189 152CLREL...
  • Page 446 Section 12 1MRK 502 048-UUS A Control VP152 VP289 189REL VP189G 189ITL VP289G VP389G VP1189G 152_OP 289_OP 189G_OP 289G_OP 389G_OP 1189G_OP EXDU_89G 189_EX1 VP289 VP389G VP_BC_12 289_CL 389G_OP BC_12_CL EXDU_BC 189_EX2 VP189G VP289G VP389G VP1189G 189G_CL 289G_CL 389G_CL 1189G_CL EXDU_89G 189_EX3 en04000539_ansi.vsd ANSI04000539 V1 EN...
  • Page 447: Signals

    Section 12 1MRK 502 048-UUS A Control 189GREL VP189 VP289 189GITL VP389 289GREL VP489 289GITL 189_OP 289_OP 389_OP 489_OP 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR VP289TR VP289 189_OP 1289OPTR 289_OP 1289CLTR VP189 VP1289TR VP289 en04000541_ansi.vsd ANSI04000541 V1 EN 12.3.10.5 Signals Table 259:...
  • Page 448 Section 12 1MRK 502 048-UUS A Control Name Type Default Description VP_BC_12 BOOLEAN Status of bus coupler apparatuses between bus1 and bus 2 are valid. EXDU_89G BOOLEAN No transmission error from any bay containing grounding switches EXDU_BC BOOLEAN No transmission error from any bus coupler bay 152_EX1 BOOLEAN External condition for breaker 152...
  • Page 449: Settings

    Section 12 1MRK 502 048-UUS A Control 12.3.10.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 12.3.11 Position evaluation POS_EVAL 12.3.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 450: Signals

    Section 12 1MRK 502 048-UUS A Control Input position (Value) Signal quality Output OPENPOS Output CLOSEPOS 0 (Breaker intermediate) Good 1 (Breaker open) Good 2 (Breaker closed) Good 3 (Breaker faulty) Good Invalid Oscillatory 12.3.11.5 Signals Table 261: POS_EVAL Input signals Name Type Default...
  • Page 451 Section 12 1MRK 502 048-UUS A Control The open or closed positions of the HV apparatuses are inputs to software modules distributed in the control IEDs. Each module contains the interlocking logic for a bay. The interlocking logic in a module is different, depending on the bay function and the switchyard arrangements, that is, double-breaker or breaker-and-a-half bays have different modules.
  • Page 452 Section 12 1MRK 502 048-UUS A Control Station bus Bay 1 Bay n Bus coupler Disc 189 and 289 closed Disc 189 and 289 closed WA1 ungrounded WA1 ungrounded WA1 and WA2 interconn WA1 not grounded . . . WA1 not grounded WA2 not grounded WA2 not grounded WA1 and WA2 interconn...
  • Page 453: Logic Rotating Switch For Function Selection And Lhmi Presentation Slggio

    Section 12 1MRK 502 048-UUS A Control or if the disconnectors operate in parallel to other closed connections, or if they are grounding on both sides. • Circuit breaker closing is only interlocked against running disconnectors in its bay or additionally in a transformer bay against the disconnectors and grounding switch on the other side of the transformer, if there is no disconnector between CB and transformer.
  • Page 454: Functionality

    Section 12 1MRK 502 048-UUS A Control 12.4.2 Functionality The logic rotating switch for function selection and LHMI presentation SLGGIO (or the selector switch function block) is used to get an enhanced selector switch functionality compared to the one provided by a hardware selector switch. Hardware selector switches are used extensively by utilities, in order to have different functions operating on pre-set values.
  • Page 455 Section 12 1MRK 502 048-UUS A Control Table 264: SLGGIO Output signals Name Type Description BOOLEAN Selector switch position 1 BOOLEAN Selector switch position 2 BOOLEAN Selector switch position 3 BOOLEAN Selector switch position 4 BOOLEAN Selector switch position 5 BOOLEAN Selector switch position 6 BOOLEAN...
  • Page 456: Settings

    Section 12 1MRK 502 048-UUS A Control 12.4.5 Settings Table 265: SLGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled NrPos 2 - 32 Number of positions in the switch OutType Pulsed Steady Output type, steady or pulse...
  • Page 457: Selector Mini Switch Vsggio

    Section 12 1MRK 502 048-UUS A Control PSTO input. If any operation is allowed the signal INTONE from the Fixed signal function block can be connected. SLGGIO function block has also an integer value output, that generates the actual position number. The positions and the block names are fully settable by the user.
  • Page 458: Settings

    Section 12 1MRK 502 048-UUS A Control Table 268: VSGGIO Output signals Name Type Description BLOCKED BOOLEAN The function is active but the functionality is blocked POSITION INTEGER Position indication, integer POS1 BOOLEAN Position 1 indication, logical signal POS2 BOOLEAN Position 2 indication, logical signal CMDPOS12 BOOLEAN...
  • Page 459: Iec 61850 Generic Communication I/O Functions Dpggio

    Section 12 1MRK 502 048-UUS A Control It is important for indication in the SLD that the a symbol is associated with a controllable object, otherwise the symbol won't be displayed on the screen. A symbol is created and configured in GDE tool in PCM600. The PSTO input is connected to the Local remote switch to have a selection of operators place, operation from local HMI (Local) or through IEC 61850 (Remote).
  • Page 460: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.6.3 Function block DPGGIO OPEN POSITION CLOSE VALID IEC09000075_1_en.vsd IEC09000075 V1 EN Figure 205: DPGGIO function block 12.6.4 Signals Table 270: DPGGIO Input signals Name Type Default Description OPEN BOOLEAN Open indication CLOSE BOOLEAN Close indication VALID...
  • Page 461: Single Point Generic Control 8 Signals Spc8Ggio

    Section 12 1MRK 502 048-UUS A Control 12.7 Single point generic control 8 signals SPC8GGIO 12.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Single point generic control 8 signals SPC8GGIO 12.7.2 Functionality The Single point generic control 8 signals SPC8GGIO function block is a collection of 8 single point commands, designed to bring in commands from REMOTE (SCADA) to those parts of the logic configuration that do not need extensive command receiving functionality (for example, SCSWI).
  • Page 462: Settings

    Section 12 1MRK 502 048-UUS A Control Table 273: SPC8GGIO Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8...
  • Page 463: Operation Principle

    Section 12 1MRK 502 048-UUS A Control 12.7.6 Operation principle The PSTO input selects the operator place (LOCAL, REMOTE or ALL). One of the eight outputs is activated based on the command sent from the operator place selected. The settings Latchedx and tPulsex (where x is the respective output) will determine if the signal will be pulsed (and how long the pulse is) or latched (steady).
  • Page 464: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.8.3 Function block AUTOBITS BLOCK ^CMDBIT1 PSTO ^CMDBIT2 ^CMDBIT3 ^CMDBIT4 ^CMDBIT5 ^CMDBIT6 ^CMDBIT7 ^CMDBIT8 ^CMDBIT9 ^CMDBIT10 ^CMDBIT11 ^CMDBIT12 ^CMDBIT13 ^CMDBIT14 ^CMDBIT15 ^CMDBIT16 ^CMDBIT17 ^CMDBIT18 ^CMDBIT19 ^CMDBIT20 ^CMDBIT21 ^CMDBIT22 ^CMDBIT23 ^CMDBIT24 ^CMDBIT25 ^CMDBIT26 ^CMDBIT27 ^CMDBIT28 ^CMDBIT29 ^CMDBIT30...
  • Page 465: Settings

    Section 12 1MRK 502 048-UUS A Control Name Type Description CMDBIT4 BOOLEAN Command out bit 4 CMDBIT5 BOOLEAN Command out bit 5 CMDBIT6 BOOLEAN Command out bit 6 CMDBIT7 BOOLEAN Command out bit 7 CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9...
  • Page 466: Operation Principle

    Section 12 1MRK 502 048-UUS A Control 12.8.6 Operation principle Automation bits function (AUTOBITS) has 32 individual outputs which each can be mapped as a Binary Output point in DNP3. The output is operated by a "Object 12" in DNP3. This object contains parameters for control-code, count, on-time and off-time. To operate an AUTOBITS output point, send a control-code of latch-On, latch-Off, pulse- On, pulse-Off, Trip or Close.
  • Page 467: Signals

    Section 12 1MRK 502 048-UUS A Control 12.9.3 Signals Table 278: I103CMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 279: I103CMD Output signals Name Type Description 16-AR BOOLEAN Information number 16 disable/enable autorecloser 17-DIFF BOOLEAN Information number 17, block of differential protection 18-PROT BOOLEAN...
  • Page 468: Signals

    Section 12 1MRK 502 048-UUS A Control 12.10.3 Signals Table 281: I103IEDCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 282: I103IEDCMD Output signals Name Type Description 19-LEDRS BOOLEAN Information number 19, reset LEDs 23-GRP1 BOOLEAN Information number 23, activate setting group 1 24-GRP2 BOOLEAN...
  • Page 469: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.11.2 Function block I103USRCMD BLOCK ^OUTPUT1 ^OUTPUT2 ^OUTPUT3 ^OUTPUT4 ^OUTPUT5 ^OUTPUT6 ^OUTPUT7 ^OUTPUT8 IEC10000284-1-en.vsd IEC10000284 V1 EN Figure 210: I103USRCMD function block 12.11.3 Signals Table 284: I103USRCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands...
  • Page 470: Function Commands Generic For Iec 60870-5-103 I103Gencmd

    Section 12 1MRK 502 048-UUS A Control Name Values (Range) Unit Step Default Description InfNo_2 1 - 255 Information number for output 2 (1-255) InfNo_3 1 - 255 Information number for output 3 (1-255) InfNo_4 1 - 255 Information number for output 4 (1-255) InfNo_5 1 - 255 Information number for output 5 (1-255)
  • Page 471: Signals

    Section 12 1MRK 502 048-UUS A Control 12.12.3 Signals Table 287: I103GENCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command Table 288: I103GENCMD Output signals Name Type Description CMD_OFF BOOLEAN Command output OFF CMD_ON BOOLEAN Command output ON 12.12.4 Settings Table 289:...
  • Page 472: Function Block

    Section 12 1MRK 502 048-UUS A Control 12.13.2 Function block I103POSCMD BLOCK POSITION SELECT IEC10000286-1-en.vsd IEC10000286 V1 EN Figure 212: I103POSCMD function block 12.13.3 Signals Table 290: I103POSCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command POSITION INTEGER Position of controllable object SELECT...
  • Page 473: Tripping Logic Common 3-Phase Output Smpptrc (94)

    Section 13 1MRK 502 048-UUS A Logic Section 13 Logic 13.1 Tripping logic common 3-phase output SMPPTRC (94) 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tripping logic common 3-phase output SMPPTRC I->O SYMBOL-K V1 EN 13.1.2 Functionality A function block for protection tripping is provided for each circuit breaker involved in...
  • Page 474: Signals

    Section 13 1MRK 502 048-UUS A Logic 13.1.4 Signals Table 292: SMPPTRC (94) Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRINP_3P BOOLEAN Trip all phases SETLKOUT BOOLEAN Input for setting the circuit breaker lockout function RSTLKOUT BOOLEAN Input for resetting the circuit breaker lockout function Table 293:...
  • Page 475: Technical Data

    Section 13 1MRK 502 048-UUS A Logic routed. It has a single trip output (TRIP) for connection to one or more of the IEDs binary outputs, as well as to other functions within the IED requiring this signal. ANSI05000789 V2 EN Figure 214: Simplified logic diagram for three pole trip Lockout can be activated either by activating the input (SETLKOUT) or automatically...
  • Page 476: Functionality

    Section 13 1MRK 502 048-UUS A Logic 13.2.2 Functionality The 12 Trip matrix logic TMAGGIO function each with 32 inputs are used to route trip signals and other logical output signals to the tripping logics SMPPTRC and SPTPTRC or to different output contacts on the IED. TMAGGIO 3 output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs for settable pulse or steady output.
  • Page 477: Signals

    Section 13 1MRK 502 048-UUS A Logic 13.2.4 Signals Table 297: TMAGGIO Input signals Name Type Default Description INPUT1 BOOLEAN Binary input 1 INPUT2 BOOLEAN Binary input 2 INPUT3 BOOLEAN Binary input 3 INPUT4 BOOLEAN Binary input 4 INPUT5 BOOLEAN Binary input 5 INPUT6 BOOLEAN...
  • Page 478: Settings

    Section 13 1MRK 502 048-UUS A Logic Table 298: TMAGGIO Output signals Name Type Description OUTPUT1 BOOLEAN OR function betweeen inputs 1 to 16 OUTPUT2 BOOLEAN OR function between inputs 17 to 32 OUTPUT3 BOOLEAN OR function between inputs 1 to 32 13.2.5 Settings Table 299:...
  • Page 479 Section 13 1MRK 502 048-UUS A Logic by OffDelay or if it shall give a pulse with duration set by PulseTime. Note that for pulsed operation and that the inputs are connected in an OR-function, a new pulse will only be given on the output if all related inputs are reset and then one is activated again.
  • Page 480: Configurable Logic Blocks

    Section 13 1MRK 502 048-UUS A Logic 13.3 Configurable logic blocks 13.3.1 Standard configurable logic blocks 13.3.1.1 Functionality A number of logic blocks and timers are available for the user to adapt the configuration to the specific application needs. • OR function block.
  • Page 481 Section 13 1MRK 502 048-UUS A Logic power interruption. The RESET input has priority if both SET and RESET are operated simultaneously. Configurable logic Q/T A number of logic blocks and timers, with the capability to propagate timestamp and quality of the input signals, are available. The function blocks assist the user to adapt the IEDs configuration to the specific application needs.
  • Page 482: Or Function Block

    Section 13 1MRK 502 048-UUS A Logic • INVALIDQT function which sets quality invalid of outputs according to a "valid" input. Inputs are copied to outputs. If input VALID is 0, or if its quality invalid bit is set, all outputs invalid quality bit will be set to invalid. The timestamp of an output will be set to the latest timestamp of INPUT and VALID inputs.
  • Page 483: Inverter Function Block Inverter

    Section 13 1MRK 502 048-UUS A Logic Signals Table 300: OR Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 INPUT5 BOOLEAN Input signal 5 INPUT6 BOOLEAN Input signal 6...
  • Page 484: Pulsetimer Function Block

    Section 13 1MRK 502 048-UUS A Logic Signals Table 302: INVERTER Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 303: INVERTER Output signals Name Type Description BOOLEAN Output signal Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 485: Controllable Gate Function Block Gate

    Section 13 1MRK 502 048-UUS A Logic Table 305: PULSETIMER Output signals Name Type Description BOOLEAN Output signal Settings Table 306: PULSETIMER Non group settings (basic) Name Values (Range) Unit Step Default Description 0.000 - 90000.000 0.001 0.010 Pulse time length 13.3.1.5 Controllable gate function block GATE Identification...
  • Page 486: Exclusive Or Function Block Xor

    Section 13 1MRK 502 048-UUS A Logic Settings Table 309: GATE Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled 13.3.1.6 Exclusive OR function block XOR Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 487: Loop Delay Function Block Loopdelay

    Section 13 1MRK 502 048-UUS A Logic Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 13.3.1.7 Loop delay function block LOOPDELAY Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 488: Timer Function Block Timerset

    Section 13 1MRK 502 048-UUS A Logic 13.3.1.8 Timer function block TIMERSET Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Timer function block TIMERSET Functionality The function block TIMERSET has pick-up and drop-out delayed outputs related to the input signal.
  • Page 489: And Function Block

    Section 13 1MRK 502 048-UUS A Logic Table 315: TIMERSET Output signals Name Type Description BOOLEAN Output signal, pick-up delayed BOOLEAN Output signal, drop-out delayed Settings Table 316: TIMERSET Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled...
  • Page 490: Set-Reset Memory Function Block Srmemory

    Section 13 1MRK 502 048-UUS A Logic Signals Table 317: AND Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 Table 318: AND Output signals Name Type Description...
  • Page 491: Reset-Set With Memory Function Block Rsmemory

    Section 13 1MRK 502 048-UUS A Logic Function block SRMEMORY RESET NOUT IEC09000293-1-en.vsd IEC09000293 V1 EN Figure 226: SRMEMORY function block Signals Table 320: SRMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 321: SRMEMORY Output signals Name...
  • Page 492 Section 13 1MRK 502 048-UUS A Logic after a power interruption will return the state it had before or if it will be reset. For a Reset- Set flip-flop, RESET input has higher priority over SET input. Table 323: Truth table for RSMEMORY function block RESET NOUT Last...
  • Page 493: Technical Data

    Section 13 1MRK 502 048-UUS A Logic 13.3.2 Technical data Table 327: Configurable logic blocks Logic block Quantity Range or value Accuracy with cycle time 5 ms 20 ms 100 ms INVERTER SRMEMORY RSMEMORY GATE PULSETIMER (0.000– ± 0.5% ± 25 ms for 20 90000.000) s ms cycle time TIMERSET...
  • Page 494: Fixed Signals Fxdsign

    Section 13 1MRK 502 048-UUS A Logic 13.4 Fixed signals FXDSIGN 13.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 13.4.2 Functionality The Fixed signals function FXDSIGN generates nine pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
  • Page 495: Settings

    Section 13 1MRK 502 048-UUS A Logic Name Type Description STRNULL STRING String signal with no characters ZEROSMPL GROUP SIGNAL Channel id for zero sample GRP_OFF GROUP SIGNAL Group signal fixed off 13.4.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 496: Function Block

    Section 13 1MRK 502 048-UUS A Logic 13.5.3 Function block B16I BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000035-1-en.vsd IEC09000035 V1 EN Figure 229: B16I function block 13.5.4 Signals Table 330: B16I Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 497: Settings

    Section 13 1MRK 502 048-UUS A Logic Table 331: B16I Output signals Name Type Description INTEGER Output value 13.5.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.5.6 Monitored data Table 332: B16I Monitored data Name...
  • Page 498: Boolean 16 To Integer Conversion With Logic Node Representation B16Ifcvi

    Section 13 1MRK 502 048-UUS A Logic Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 7 BOOLEAN Input 8 BOOLEAN Input 9 IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12 2048 IN13 BOOLEAN...
  • Page 499: Function Block

    Section 13 1MRK 502 048-UUS A Logic 13.6.3 Function block B16IFCVI BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000624-1-en.vsd IEC09000624 V1 EN Figure 230: B16IFCVI function block 13.6.4 Signals Table 333: B16IFCVI Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 500: Settings

    Section 13 1MRK 502 048-UUS A Logic Table 334: B16IFCVI Output signals Name Type Description INTEGER Output value 13.6.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.6.6 Monitored data Table 335: B16IFCVI Monitored data Name...
  • Page 501: Integer To Boolean 16 Conversion Ib16A

    Section 13 1MRK 502 048-UUS A Logic Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 6 BOOLEAN Input 7 BOOLEAN Input 8 BOOLEAN Input 9 IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12...
  • Page 502: Function Block

    Section 13 1MRK 502 048-UUS A Logic 13.7.3 Function block IB16A BLOCK OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT11 OUT12 OUT13 OUT14 OUT15 OUT16 IEC09000036-1-en.vsd IEC09000036 V1 EN Figure 231: IB16A function block 13.7.4 Signals Table 336: IB16A Input signals Name Type...
  • Page 503: Settings

    Section 13 1MRK 502 048-UUS A Logic Name Type Description OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 13.7.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.7.6 Operation principle With integer 15 on the input INP the OUT1 = OUT2 = OUT3= OUT4 =1 and the...
  • Page 504: Integer To Boolean 16 Conversion With Logic Node Representation Ib16Fcvb

    Section 13 1MRK 502 048-UUS A Logic Name of OUTx Type Description Value when Value when activated deactivated OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN...
  • Page 505: Function Block

    Section 13 1MRK 502 048-UUS A Logic IB16FCVB function can receive remote values over IEC61850 when the operator position input PSTO is in position remote. The block input will freeze the output at the last value. 13.8.3 Function block IB16FCVB BLOCK OUT1 PSTO...
  • Page 506: Settings

    Section 13 1MRK 502 048-UUS A Logic Name Type Description OUT10 BOOLEAN Output 10 OUT11 BOOLEAN Output 11 OUT12 BOOLEAN Output 12 OUT13 BOOLEAN Output 13 OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 13.8.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.8.6...
  • Page 507: Supervision Teiggio

    Section 13 1MRK 502 048-UUS A Logic Table 340: Outputs and their values when activated Name of OUTx Type Description Value when Value when activated deactivated OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN...
  • Page 508: Functionality

    Section 13 1MRK 502 048-UUS A Logic 13.9.2 Functionality Elapsed Time Integrator (TEIGGIO) function is a function that accumulates the elapsed time when a given binary signal has been high. The main features of TEIGGIO are • Applicable to long time integration (≤999 999.9 seconds). •...
  • Page 509: Settings

    Section 13 1MRK 502 048-UUS A Logic Table 342: TEIGGIO Output signals Name Type Description WARNING BOOLEAN Indicator of the integrated time has reached the warning limit ALARM BOOLEAN Indicator of the integrated time has reached the alarm limit OVERFLOW BOOLEAN Indicator of the integrated time has reached the overflow limit...
  • Page 510 Section 13 1MRK 502 048-UUS A Logic Loop Delay tOverflow tWarning OVERFLOW tAlarm WARNING Transgression Supervision Plus Retain ALARM BLOCK RESET ACCTIME Time Integration Loop Delay IEC12000195-2-en.vsd IEC12000195 V2 EN Figure 234: TEIGGIO Simplified logic TEIGGIO main functionalities are • integrate the elapsed time when IN has been high •...
  • Page 511: Operation Accuracy

    Section 13 1MRK 502 048-UUS A Logic tAlarm and tWarning are user settable limits. They are also independent, that is, there is no check if tAlarm > tWarning. tAlarm and tWarning are possible to be defined with a resolution of 10 ms, depending on the level of the defined values for the parameters.
  • Page 513: Measurements

    Section 14 1MRK 502 048-UUS A Monitoring Section 14 Monitoring 14.1 Measurements 14.1.1 Functionality Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850.
  • Page 514: Measurements Cvmmxn

    Section 14 1MRK 502 048-UUS A Monitoring • P, Q and S: three phase active, reactive and apparent power • PF: power factor • V: phase-to-phase voltage magnitude • I: phase current magnitude • F: power system frequency The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:...
  • Page 515: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring 14.1.2.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CVMMXN I3P* V3P* S_RANGE P_INST P_RANGE Q_INST Q_RANGE PF_RANGE ILAG ILEAD V_RANGE...
  • Page 516: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Name Type Description REAL Power factor magnitude of deadband value PF_RANGE INTEGER Power factor range ILAG BOOLEAN Current is lagging voltage ILEAD BOOLEAN Current is leading voltage REAL Calculated voltage magnitude of deadband value U_RANGE INTEGER Calcuated voltage range...
  • Page 517 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description PMax -2000.0 - 2000.0 200.0 Maximum value in % of SBase PRepTyp Cyclic Cyclic Reporting type Dead band Int deadband QMin -2000.0 - 2000.0 -200.0 Minimum value in % of SBase QMax -2000.0 - 2000.0 200.0...
  • Page 518 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description PDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s PZeroDb 0 - 100000 Zero point clamping PHiLim -2000.0 - 2000.0 120.0 High limit in % of SBase...
  • Page 519: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description IHiHiLim 0.0 - 500.0 150.0 High High limit in % of IBase IHiLim 0.0 - 500.0 120.0 High limit in % of IBase ILowLim 0.0 - 500.0 80.0 Low limit in % of IBase ILowLowLim...
  • Page 520: Phase Current Measurement Cmmxu

    Section 14 1MRK 502 048-UUS A Monitoring Name Type Values (Range) Unit Description REAL Power factor magnitude of deadband value REAL Calculated voltage magnitude of deadband value REAL Calculated current magnitude of deadband value REAL System frequency magnitude of deadband value 14.1.3 Phase current measurement CMMXU 14.1.3.1...
  • Page 521: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Table 351: CMMXU Output signals Name Type Description REAL IA Amplitude IA_RANGE INTEGER Phase A current magnitude range IA_ANGL REAL IA Angle REAL IB Amplitude IB_RANGE INTEGER Phase B current magnitude range IB_ANGL REAL IB Angle REAL...
  • Page 522: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description IMagComp5 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 5% of In IMagComp30 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 30% of IMagComp100 -10.000 - 10.000 0.001...
  • Page 523: Signals

    Section 14 1MRK 502 048-UUS A Monitoring VMMXU V3P* V_AB VAB_RANG VAB_ANGL V_BC VBC_RANG VBC_ANGL V_CA VCA_RANG VCA_ANGL ANSI08000223-1-en.vsd ANSI08000223 V1 EN Figure 237: VMMXU function block 14.1.4.3 Signals Table 355: VMMXU Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL Table 356: VMMXU Output signals...
  • Page 524: Settings

    Section 14 1MRK 502 048-UUS A Monitoring 14.1.4.4 Settings Table 357: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups VLDbRepInt 1 - 300...
  • Page 525: Current Sequence Component Measurement Cmsqi

    Section 14 1MRK 502 048-UUS A Monitoring 14.1.5 Current sequence component measurement CMSQI 14.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current sequence component CMSQI measurement I1, I2, I0 SYMBOL-VV V1 EN 14.1.5.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 526: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Name Type Description I1RANG INTEGER I1Amplitude range I1ANGL REAL I1 Angle REAL I2 Amplitude I2RANG INTEGER I2 Magnitude range I2ANGL REAL I2Angle 14.1.5.4 Settings Table 362: CMSQI Non group settings (basic) Name Values (Range) Unit Step Default...
  • Page 527: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring Table 363: CMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3I0ZeroDb 0 - 100000 Zero point clamping 3I0HiHiLim 0 - 500000 3600 High High limit (physical value) 3I0HiLim 0 - 500000 3300 High limit (physical value) 3I0LowLim...
  • Page 528: Voltage Sequence Measurement Vmsqi

    Section 14 1MRK 502 048-UUS A Monitoring 14.1.6 Voltage sequence measurement VMSQI 14.1.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Voltage sequence measurement VMSQI U1, U2, U0 SYMBOL-TT V1 EN 14.1.6.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 529: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Name Type Description V1RANG INTEGER V1 Magnitude range V1ANGL REAL U1 Angle REAL U2 Amplitude V2RANG INTEGER V2 Magnitude range V2ANGL REAL U2 Angle 14.1.6.4 Settings Table 367: VMSQI Non group settings (basic) Name Values (Range) Unit...
  • Page 530: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring Table 368: VMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3V0ZeroDb 0 - 100000 Zero point clamping 3V0HiHiLim 0 - 2000000 288000 High High limit (physical value) 3V0HiLim 0 - 2000000 258000 High limit (physical value) 3V0LowLim...
  • Page 531: Phase-Neutral Voltage Measurement Vnmmxu

    Section 14 1MRK 502 048-UUS A Monitoring 14.1.7 Phase-neutral voltage measurement VNMMXU 14.1.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Phase-neutral voltage measurement VNMMXU SYMBOL-UU V1 EN 14.1.7.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 532: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Name Type Description VB_RANGE INTEGER V_B Amplitude range VB_ANGL REAL V_B Angle, magnitude of reported value REAL V_C Amplitude, magnitude of reported value VC_RANGE INTEGER V_C Amplitude range VC_ANGL REAL VC Angle, magnitude of reported value 14.1.7.4 Settings Table 372:...
  • Page 533: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring 14.1.7.5 Monitored data Table 374: VNMMXU Monitored data Name Type Values (Range) Unit Description REAL V_A Amplitude, magnitude of reported value VA_ANGL REAL V_A Angle, magnitude of reported value REAL V_B Amplitude, magnitude of reported value VB_ANGL REAL...
  • Page 534 Section 14 1MRK 502 048-UUS A Monitoring clamping might be overridden by the zero point clamping used for the measurement values within CVMMXN. Continuous monitoring of the measured quantity Users can continuously monitor the measured quantity available in each function block by means of four defined operating thresholds, see figure 241.
  • Page 535 Section 14 1MRK 502 048-UUS A Monitoring Actual value of the measured quantity The actual value of the measured quantity is available locally and remotely. The measurement is continuous for each measured quantity separately, but the reporting of the value to the higher levels depends on the selected reporting mode. The following basic reporting modes are available: •...
  • Page 536 Section 14 1MRK 502 048-UUS A Monitoring Magnitude dead-band supervision If a measuring value is changed, compared to the last reported value, and the change is larger than the ±ΔY pre-defined limits that are set by user (UDbRepIn), then the measuring channel reports the new value to a higher level.
  • Page 537: Measurements Cvmmxn

    Section 14 1MRK 502 048-UUS A Monitoring reported and set as a new base for the following measurements (as well as for the values Y3, Y4 and Y5). The integral dead-band supervision is particularly suitable for monitoring signals with small variations that can last for relatively long periods. A1 >= pre-set value A >=...
  • Page 538 Section 14 1MRK 502 048-UUS A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” A, B, C Used when three × × × phase-to-ground voltages are EQUATION1561 V1 EN available EQUATION1562 V1 EN...
  • Page 539 Section 14 1MRK 502 048-UUS A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” Used when only × phase-to- = × × ground voltage is available (Equation 107) EQUATION1575 V1 EN...
  • Page 540 Section 14 1MRK 502 048-UUS A Monitoring Each analog output has a corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4, see section "Measurement supervision". Calibration of analog inputs Measured currents and voltages used in the CVMMXN function can be calibrated to get class 0.5 measuring accuracy.
  • Page 541 Section 14 1MRK 502 048-UUS A Monitoring measured quantity. Filtering is performed in accordance with the following recursive formula: = × × Calculated (Equation 115) EQUATION1407 V1 EN where: is a new measured value (that is P, Q, S, V, I or PF) to be given out from the function is the measured value given from the measurement function in previous execution cycle is the new calculated value in the present execution cycle Calculated...
  • Page 542: Phase Current Measurement Cmmxu

    Section 14 1MRK 502 048-UUS A Monitoring Directionality CTStartPoint defines if the CTs grounding point is located towards or from the protected object under observation. If everything is properly set power is always measured towards protection object. Busbar Protected Object ANSI05000373_2_en.vsd ANSI05000373 V2 EN Figure 246:...
  • Page 543: Phase-Phase And Phase-Neutral Voltage Measurements Vmmxu, Vnmmxu

    Section 14 1MRK 502 048-UUS A Monitoring of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 245. Phase currents (magnitude and angle) are available on the outputs and each magnitude output has a corresponding supervision level output (Ix_RANGE). The supervision output signal is an integer in the interval 0-4, see section "Measurement supervision".
  • Page 544: Event Counter Cntggio

    Section 14 1MRK 502 048-UUS A Monitoring Function Range or value Accuracy Reactive power, Q 0.1 x V < V < 1.5 x V ± 1.0% of S at S ≤ S 0.2 x I < I < 4.0 x I ±...
  • Page 545: Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.2.4 Signals Table 376: CNTGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function COUNTER1 BOOLEAN Input for counter 1 COUNTER2 BOOLEAN Input for counter 2 COUNTER3 BOOLEAN Input for counter 3 COUNTER4 BOOLEAN Input for counter 4...
  • Page 546: Operation Principle

    Section 14 1MRK 502 048-UUS A Monitoring Name Type Values (Range) Unit Description VALUE4 INTEGER Output of counter 4 VALUE5 INTEGER Output of counter 5 VALUE6 INTEGER Output of counter 6 14.2.7 Operation principle Event counter (CNTGGIO) has six counter inputs. CNTGGIO stores how many times each of the inputs has been activated.
  • Page 547: Function Description

    Section 14 1MRK 502 048-UUS A Monitoring 14.3 Function description Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Limit counter L4UFCNT 14.3.1 Limit counter L4UFCNT 14.3.2 Introduction Limit counter (L4UFCNT) provides a settable counter with four independent limits where the number of positive and/or negative flanks on the input signal are counted against the setting values for limits.
  • Page 548 Section 14 1MRK 502 048-UUS A Monitoring BLOCK INPUT Operation Counter RESET VALUE Overflow CountType OVERFLOW Detection OnMaxValue LIMIT1 … 4 Limit MaxValue Check CounterLimit1...4 ERROR Error Detection InitialValue IEC12000625_1_en.vsd IEC12000625 V1 EN Figure 248: Logic diagram The counter can be initialized to count from a settable non-zero value after reset of the function.
  • Page 549: Reporting

    Section 14 1MRK 502 048-UUS A Monitoring The Error output is activated as an indicator of setting the counter limits and/or initial value setting(s) greater than the maximum value. The counter stops counting the input and all the outputs except the error output remains at zero state. The error condition remains until the correct settings for counter limits and/or initial value setting(s) are applied.
  • Page 550: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Table 382: L4UFCNT Output signals Name Type Description ERROR BOOLEAN Error indication on counter limit and/or initial value settings OVERFLOW BOOLEAN Overflow indication on count of greater than MaxValue LIMIT1 BOOLEAN Counted value is larger than or equal to CounterLimit1 LIMIT2 BOOLEAN Counted value is larger than or equal to CounterLimit2...
  • Page 551: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring 14.3.8 Technical data Table 385: L4UFCNTtechnical data Function Range or value Accuracy Counter value 0-65535 Max. count up speed 5-160 pulses/s 14.4 Disturbance report 14.4.1 Functionality Complete and reliable information about disturbances in the primary and/or in the secondary system together with continuous event-logging is accomplished by the disturbance report functionality.
  • Page 552: Disturbance Report Drprdre

    Section 14 1MRK 502 048-UUS A Monitoring 14.4.2 Disturbance report DRPRDRE 14.4.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Disturbance report DRPRDRE 14.4.2.2 Function block DRPRDRE DRPOFF RECSTART RECMADE CLEARED MEMUSED IEC09000346-1-en.vsd IEC09000346 V1 EN Figure 250: DRPRDRE function block 14.4.2.3...
  • Page 553: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description PostRetrig Disabled Disabled Post-fault retrig enabled (On) or not (Off) Enabled MaxNoStoreRec 10 - 100 Maximum number of stored disturbances ZeroAngleRef 1 - 30 Trip value recorder, phasor reference channel OpModeTest Disabled Disabled...
  • Page 554 Section 14 1MRK 502 048-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh8 BOOLEAN Over level trig for analog channel 8 activated UnTrigStatCh9 BOOLEAN Under level trig for analog channel 9 activated OvTrigStatCh9 BOOLEAN Over level trig for analog channel 9 activated UnTrigStatCh10 BOOLEAN...
  • Page 555 Section 14 1MRK 502 048-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh19 BOOLEAN Over level trig for analog channel 19 activated UnTrigStatCh20 BOOLEAN Under level trig for analog channel 20 activated OvTrigStatCh20 BOOLEAN Over level trig for analog channel 20 activated UnTrigStatCh21 BOOLEAN...
  • Page 556 Section 14 1MRK 502 048-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh30 BOOLEAN Over level trig for analog channel 30 activated UnTrigStatCh31 BOOLEAN Under level trig for analog channel 31 activated OvTrigStatCh31 BOOLEAN Over level trig for analog channel 31 activated UnTrigStatCh32 BOOLEAN...
  • Page 557: Analog Input Signals Axradr

    Section 14 1MRK 502 048-UUS A Monitoring 14.4.3 Analog input signals AxRADR 14.4.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Analog input signals A1RADR Analog input signals A2RADR Analog input signals A3RADR 14.4.3.2 Function block A1RADR ^GRPINPUT1 ^GRPINPUT2...
  • Page 558: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Table 389: A1RADR Input signals Name Type Default Description GRPINPUT1 GROUP Group signal for input 1 SIGNAL GRPINPUT2 GROUP Group signal for input 2 SIGNAL GRPINPUT3 GROUP Group signal for input 3 SIGNAL GRPINPUT4 GROUP Group signal for input 4...
  • Page 559 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description Operation05 Disabled Disabled Operation On/Off Enabled Operation06 Disabled Disabled Operation On/Off Enabled Operation07 Disabled Disabled Operation On/Off Enabled Operation08 Disabled Disabled Operation On/Off Enabled Operation09 Disabled Disabled Operation On/Off Enabled...
  • Page 560 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description FunType9 0 - 255 Function type for analog channel 9 (IEC-60870-5-103) InfNo9 0 - 255 Information number for analog channel 9 (IEC-60870-5-103) FunType10 0 - 255 Function type for analog channel 10 (IEC-60870-5-103) InfNo10...
  • Page 561 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp04 Disabled Disabled Use over level trigger for analog channel 4 (on) Enabled or not (off) OverTrigLe04 0 - 5000 Over trigger level for analog channel 4 in % of signal NomValue05 0.0 - 999999.9...
  • Page 562: Analog Input Signals A4Radr

    Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe09 0 - 200 Under trigger level for analog channel 9 in % of signal OverTrigOp09 Disabled Disabled Use over level trigger for analog channel 9 (on) Enabled or not (off) OverTrigLe09...
  • Page 563: Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.4.4.3 Signals Table 392: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL Analog channel 33 INPUT34 REAL Analog channel 34 INPUT35 REAL Analog channel 35 INPUT36 REAL...
  • Page 564 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description InfNo31 0 - 255 Information number for analog channel 31 (IEC-60870-5-103) FunType32 0 - 255 Function type for analog channel 32 (IEC-60870-5-103) InfNo32 0 - 255 Information number for analog channel 32 (IEC-60870-5-103) FunType33...
  • Page 565 Section 14 1MRK 502 048-UUS A Monitoring Table 394: A4RADR Non group settings (advanced) Name Values (Range) Unit Step Default Description NomValue31 0.0 - 999999.9 Nominal value for analog channel 31 UnderTrigOp31 Disabled Disabled Use under level trigger for analog channel 31 Enabled (on) or not (off) UnderTrigLe31...
  • Page 566 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp35 Disabled Disabled Use over level trigger for analog channel 35 Enabled (on) or not (off) OverTrigLe35 0 - 5000 Over trigger level for analog channel 35 in % of signal NomValue36 0.0 - 999999.9...
  • Page 567: Binary Input Signals Bxrbdr

    Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe40 0 - 200 Under trigger level for analog channel 40 in % of signal OverTrigOp40 Disabled Disabled Use over level trigger for analog channel 40 Enabled (on) or not (off) OverTrigLe40...
  • Page 568: Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.4.5.3 Signals B1RBDR - B6RBDR Input signals Tables for input signals for B1RBDR - B6RBDR are all similar except for INPUT and description number. • B1RBDR, INPUT1 - INPUT16 • B2RBDR, INPUT17 - INPUT32 •...
  • Page 569 Section 14 1MRK 502 048-UUS A Monitoring • B4RBDR, channel49 - channel64 • B5RBDR, channel65 - channel80 • B6RBDR, channel81 - channel96 Table 396: B1RBDR Non group settings (basic) Name Values (Range) Unit Step Default Description TrigDR01 Disabled Disabled Trigger operation On/Off Enabled SetLED01 Disabled...
  • Page 570 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigDR08 Disabled Disabled Trigger operation On/Off Enabled SetLED08 Disabled Disabled Set LED on HMI for binary channel 8 Start Trip Pick up and trip TrigDR09 Disabled Disabled Trigger operation On/Off Enabled...
  • Page 571 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigDR16 Disabled Disabled Trigger operation On/Off Enabled SetLED16 Disabled Disabled Set LED on HMI for binary channel 16 Start Trip Pick up and trip FunType1 0 - 255 Function type for binary channel 1 (IEC -60870-5-103) InfNo1...
  • Page 572 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description FunType11 0 - 255 Function type for binary channel 11 (IEC -60870-5-103) InfNo11 0 - 255 Information number for binary channel 11 (IEC -60870-5-103) FunType12 0 - 255 Function type for binary channel 12 (IEC -60870-5-103) InfNo12...
  • Page 573 Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigLevel05 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope for Trig on 1 binary input 5 IndicationMa05 Hide Hide Indication mask for binary channel 5 Show TrigLevel06 Trig on 0...
  • Page 574: Operation Principle

    Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description IndicationMa15 Hide Hide Indication mask for binary channel 15 Show TrigLevel16 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope for Trig on 1 binary input 16 IndicationMa16...
  • Page 575 Section 14 1MRK 502 048-UUS A Monitoring A1-4RADR Disturbance Report A4RADR DRPRDRE Analog signals Trip value rec B1-6RBDR Disturbance recorder Binary signals B6RBDR Sequential of events Event recorder Indications ANSI09000337-1-en.vsd ANSI09000337 V1 EN Figure 254: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
  • Page 576: Disturbance Information

    Section 14 1MRK 502 048-UUS A Monitoring The IED flash disk should NOT be used to store any user files. This might cause disturbance recordings to be deleted due to lack of disk space. 14.4.6.1 Disturbance information Date and time of the disturbance, the indications, events, fault location and the trip values are available on the local HMI.
  • Page 577: Time Tagging

    Section 14 1MRK 502 048-UUS A Monitoring 14.4.6.7 Time tagging The IED has a built-in real-time calendar and clock. This function is used for all time tagging within the disturbance report 14.4.6.8 Recording times Disturbance report DRPRDRE records information about a disturbance during a settable time frame.
  • Page 578: Analog Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.4.6.9 Analog signals Up to 40 analog signals can be selected for recording by the Disturbance recorder and triggering of the Disturbance report function. Out of these 40, 30 are reserved for external analog signals from analog input modules via preprocessing function blocks (SMAI) and summation block (3PHSUM).
  • Page 579: Binary Signals

    Section 14 1MRK 502 048-UUS A Monitoring available as a group signal output, phase outputs and calculated residual output (AIN- output). In situations where AI4-input is used as an input signal the corresponding information is available on the non-calculated output (AI4) on the SMAI function block. Connect the signals to the AxRADR accordingly.
  • Page 580: Post Retrigger

    Section 14 1MRK 502 048-UUS A Monitoring A trigger can be of type: • Manual trigger • Binary-signal trigger • Analog-signal trigger (over/under function) Manual trigger A disturbance report can be manually triggered from the local HMI, PCM600 or via station bus (IEC 61850).
  • Page 581: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring In order to capture the new disturbance it is possible to allow retriggering (PostRetrig = Enabled) during the post-fault time. In this case a new, complete recording will start and, during a period, run in parallel with the initial recording. When the retrig parameter is disabled (PostRetrig = Disabled), a new recording will not start until the post-fault (PostFaultrecT or TimeLimit) period is terminated.
  • Page 582: Indications

    Section 14 1MRK 502 048-UUS A Monitoring 14.5 Indications 14.5.1 Functionality To get fast, condensed and reliable information about disturbances in the primary and/or in the secondary system it is important to know, for example binary signals that have changed status during a disturbance. This information is used in the short perspective to get information via the local HMI in a straightforward way.
  • Page 583: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring Function controlled by SetLEDn setting in Disturbance report function. Indication list: The possible indication signals are the same as the ones chosen for the disturbance report function and disturbance recorder. The indication function tracks 0 to 1 changes of binary signals during the recording period of the collection window.
  • Page 584: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring The event recorder information is available for the disturbances locally in the IED. The event recording information is an integrated part of the disturbance record (Comtrade file). 14.6.2 Function block The Event recorder has no function block of it’s own. 14.6.3 Signals 14.6.3.1...
  • Page 585: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring 14.6.5 Technical data Table 400: DRPRDRE technical data Function Value Buffer capacity Maximum number of events in disturbance report Maximum number of disturbance reports Resolution 1 ms Accuracy Depending on time synchronizing 14.7 Sequential of events 14.7.1 Functionality...
  • Page 586: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring The list can be configured to show oldest or newest events first with a setting on the local HMI. The sequential of events function runs continuously, in contrast to the event recorder function, which is only active during a disturbance, and each event record is an integral part of its associated DR.
  • Page 587: Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.8.3 Signals 14.8.3.1 Input signals The trip value recorder function uses analog input signals connected to A1RADR to A3RADR (not A4RADR). 14.8.4 Operation principle Trip value recorder calculates and presents both fault and pre-fault magnitudes as well as the phase angles of all the selected analog input signals.
  • Page 588: Disturbance Recorder

    Section 14 1MRK 502 048-UUS A Monitoring 14.9 Disturbance recorder 14.9.1 Functionality The Disturbance recorder function supplies fast, complete and reliable information about disturbances in the power system. It facilitates understanding system behavior and related primary and secondary equipment during and after a disturbance. Recorded information is used for different purposes in the short perspective (for example corrective actions) and long perspective (for example functional analysis).
  • Page 589: Memory And Storage

    Section 14 1MRK 502 048-UUS A Monitoring Disturbance recorder collects analog values and binary signals continuously, in a cyclic buffer. The pre-fault buffer operates according to the FIFO principle; old data will continuously be overwritten as new data arrives when the buffer is full. The size of this buffer is determined by the set pre-fault recording time.
  • Page 590 Section 14 1MRK 502 048-UUS A Monitoring The header file (optional in the standard) contains basic information about the disturbance, that is, information from the Disturbance report sub-functions. The Disturbance handling tool use this information and present the recording in a user-friendly way.
  • Page 591: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring 14.9.6 Technical data Table 403: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of binary inputs Maximum number of disturbance reports Maximum total recording time (3.4 s recording time and maximum number of 340 seconds (100 channels, typical value) recordings) at 50 Hz...
  • Page 592: Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.10.4 Signals Table 404: SPGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input status 14.10.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 593: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring 14.11.3 Function block SP16GGIO BLOCK ^IN1 ^IN2 ^IN3 ^IN4 ^IN5 ^IN6 ^IN7 ^IN8 ^IN9 ^IN10 ^IN11 ^IN12 ^IN13 ^IN14 ^IN15 ^IN16 IEC09000238_en_1.vsd IEC09000238 V1 EN Figure 258: SP16GGIO function block 14.11.4 Signals Table 405: SP16GGIO Input signals Name Type...
  • Page 594: Settings

    Section 14 1MRK 502 048-UUS A Monitoring 14.11.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 14.11.6 MonitoredData Table 406: SP16GGIO Monitored data Name Type Values (Range) Unit Description OUT1 GROUP Output 1 status...
  • Page 595: Operation Principle

    Section 14 1MRK 502 048-UUS A Monitoring 14.11.7 Operation principle Upon receiving signals at its inputs, IEC 61850 generic communication I/O functions 16 inputs (SP16GGIO) function will send the signals over IEC 61850-8-1 to the equipment or system that requests this signals. To be able to get the signal, one must use other tools, described in the Engineering manual and define which function block in which equipment or system should receive this information.
  • Page 596: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Table 408: MVGGIO Output signals Name Type Description VALUE REAL Magnitude of deadband value RANGE INTEGER Range 14.12.5 Settings Table 409: MVGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description BasePrefix micro unit...
  • Page 597: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring 14.12.6 Monitored data Table 410: MVGGIO Monitored data Name Type Values (Range) Unit Description VALUE REAL Magnitude of deadband value RANGE INTEGER 0=Normal Range 1=High 2=Low 3=High-High 4=Low-Low 14.12.7 Operation principle Upon receiving an analog signal at its input, IEC61850 generic communication I/O functions (MVGGIO) will give the instantaneous value of the signal and the range, as output values.
  • Page 598: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring 14.13.3 Function block MVEXP RANGE* HIGHHIGH HIGH NORMAL LOWLOW IEC09000215-1-en.vsd IEC09000215 V1 EN Figure 259: MVEXP function block 14.13.4 Signals Table 411: MVEXP Input signals Name Type Default Description RANGE INTEGER Measured value range Table 412: MVEXP Output signals Name...
  • Page 599: Station Battery Supervision Spvnzbat

    Section 14 1MRK 502 048-UUS A Monitoring Table 413: Input integer value converted to binary output signals Measured supervised below low-low between low‐ between low between high- above high-high value is: limit low and low and high limit high and high limit limit limit...
  • Page 600: Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.14.4 Signals Table 414: SPVNZBAT Input signals Name Type Default Description V_BATT REAL 0.00 Battery terminal voltage that has to be supervised BLOCK BOOLEAN Blocks all the output signals of the function Table 415: SPVNZBAT Output signals Name Type...
  • Page 601: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring 14.14.7 Monitored Data Table 418: SPVNZBAT Monitored data Name Type Values (Range) Unit Description BATTVOLT REAL Service value of the battery terminal voltage 14.14.8 Operation principle The function can be enabled and disabled with the Operation setting. The corresponding parameter values are Enable and Disable.
  • Page 602: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring The measured voltage between the battery terminals V_BATT is available through the Monitored data view. High level detector The level detector compares the battery voltage V_BATT with the set value of the BattVoltHiLim setting. If the value of the V_BATT input exceeds the set value of the BattVoltHiLim setting, the pickup signal PU_VHI is activated.
  • Page 603: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring input signals to the function. In addition, the function generates alarms based on received information. 14.15.3 Function block SSIMG (63) BLOCK PRESSURE BLK_ALM PRES_ALM PRESSURE PRES_LO TEMP TEMP PRES_ALM TEMP_ALM PRES_LO TEMP_LO SET_P_LO SET_T_LO RESET_LO ANSI09000129-1-en.vsd...
  • Page 604: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Table 421: SSIMG (63) Output signals Name Type Description PRESSURE REAL Pressure service value PRES_ALM BOOLEAN Pressure below alarm level PRES_LO BOOLEAN Pressure below lockout level TEMP REAL Temperature of the insulation medium TEMP_ALM BOOLEAN Temperature above alarm level...
  • Page 605: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring delay. The two time delay settings, tPressureAlarm and tPressureLO, are included in order not to initiate any alarm for short sudden changes in the gas pressure. If the gas pressure in the circuit breaker goes below the levels for more than the set time delays the corresponding signals, PRES_ALM, pressure below alarm level and PRES_LO, pressure below lockout level alarm will be obtained.
  • Page 606: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring 14.16.3 Function block SSIML (71) BLOCK LEVEL BLK_ALM LVL_ALM LEVEL LVL_LO TEMP TEMP LVL_ALM TEMP_ALM LEVEL_LO TEMP_LO SET_L_LO SET_T_LO RESET_LO ANSI09000128-1-en.vsd ANSI09000128 V1 EN Figure 263: SSIML (71) function block 14.16.4 Signals Inputs LEVEL and TEMP together with settings LevelAlmLimit, LevelLOLimit, TempAlarmLimit and TempLOLimit are not supported in this release of 650 series.
  • Page 607: Settings

    Section 14 1MRK 502 048-UUS A Monitoring 14.16.5 Settings Table 426: SSIML (71) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled LevelAlmLimit 0.00 - 25.00 0.01 5.00 Alarm setting for level LevelLOLimit 0.00 - 25.00 0.01 3.00...
  • Page 608: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring 14.16.7 Technical data Table 427: SSIML(71) Technical data Function Range or value Accuracy Timers (0.000-60.000) s ± 0.5% ± 110 ms 14.17 Circuit breaker condition monitoring SSCBR 14.17.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 609: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring 14.17.3 Function block SSCBR I3P* TRVTOAL BLOCK TRVTCAL BLK_ALM SPRCHRAL POSOPEN OPRALM POSCLOSE OPRLOALM ALMPRES IACCALM LOPRES IACCLOAL SPRCHRGN CBLIFEAL SPRCHRGD NOOPRALM CBCNTRST PRESALM IACCRST PRESLO SPCHTRST CBOPEN TRVTRST CBINVPOS ANSI10000281-1-en.vsd ANSI10000281 V1 EN Figure 264: SSCBR function block 14.17.4...
  • Page 610: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Table 429: SSCBR Output signals Name Type Description TRVTOAL BOOLEAN CB open travel time exceeded set value TRVTCAL BOOLEAN CB close travel time exceeded set value SPRCHRAL BOOLEAN Spring charging time has crossed the set value OPRALM BOOLEAN Number of CB operations exceeds alarm limit...
  • Page 611: Monitored Data

    Section 14 1MRK 502 048-UUS A Monitoring Name Values (Range) Unit Step Default Description OpNumLO 0 - 9999 Lockout limit for number of operations tOpenAlm 0 - 200 Alarm level setting for open travel time tCloseAlm 0 - 200 Alarm level setting for close travel time OpenTimeCorr 0 - 100 Correction factor for open travel time...
  • Page 612: Operation Principle

    Section 14 1MRK 502 048-UUS A Monitoring 14.17.7 Operation principle The circuit breaker condition monitoring function includes a number of metering and monitoring subfunctions. The functions can be enabled and disabled with the Operation setting. The corresponding parameter values are Enable and Disable. The operation counters are cleared when Operation is set to Disabled.
  • Page 613: Circuit Breaker Status

    Section 14 1MRK 502 048-UUS A Monitoring CBOPEN POSCLOSE Circuit POSOPEN breaker CBINVPOS status Operation NOOPRALM monitoring BLK_ALM BLOCK TRVTOAL Breaker contact travel time TRVTCAL TRVTRST OPRALM Operation counter OPRLOALM IACCALM Accumula- ted energy IACCLOAL IACCRST Breaker CBLIFEAL life time CBCNTRST Spring SPRCHRGN...
  • Page 614: Circuit Breaker Operation Monitoring

    Section 14 1MRK 502 048-UUS A Monitoring breaker status monitoring can be described using a module diagram. All the modules in the diagram are explained in the next sections. POSCLOSE CBOPEN Contact POSOPEN position CBINVPOS indicator Phase current check GUID-60ADC120-4B5A-40D8-B1C5-475E4634214B-ANSI V1 EN Figure 266: Functional module diagram for monitoring circuit breaker status BLOCK and BLK_ALM inputs...
  • Page 615: Breaker Contact Travel Time

    Section 14 1MRK 502 048-UUS A Monitoring GUID-82C88B52-1812-477F-8B1A-3011A300547A V1 EN Figure 267: Functional module diagram for calculating inactive days and alarm for circuit breaker operation monitoring Inactivity timer The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state.
  • Page 616 Section 14 1MRK 502 048-UUS A Monitoring Travelling time calculator The breaker contact travel time is calculated from the time between auxiliary contacts' state change. The open travel time is measured between the opening of the POSCLOSE auxiliary contact and the closing of the POSOPEN auxiliary contact. Travel time is also measured between the opening of the POSOPEN auxiliary contact and the closing of the POSCLOSE auxiliary contact.
  • Page 617: Operation Counter

    Section 14 1MRK 502 048-UUS A Monitoring 14.17.7.4 Operation counter The operation counter subfunction calculates the number of breaker operation cycles. Both open and close operations are included in one operation cycle. The operation counter value is updated after each open operation. The operation of the subfunction can be described by using a module diagram.
  • Page 618 Section 14 1MRK 502 048-UUS A Monitoring IACCLOAL Accumula- Alarm limit ted energy check calculator IACCALM POSCLOSE IACCRST BLOCK BLK_ALM GUID-DAC3746F-DFBF-4186-A99D-1D972578D32A-ANSI V1 EN Figure 270: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s].
  • Page 619: Remaining Life Of The Circuit Breaker

    Section 14 1MRK 502 048-UUS A Monitoring be reset by setting the Clear accum. breaking curr setting to on in the clear menu from LHMI. Alarm limit check The IACCALM alarm is activated when the accumulated energy exceeds the value set with the AccCurrAlmLvl threshold setting.
  • Page 620: Circuit Breaker Spring Charged Indication

    Section 14 1MRK 502 048-UUS A Monitoring The remaining life is calculated separately for all three phases and it is available as a monitored data value CBLIFE_A (_B, _C). The values can be cleared by setting the parameter CB wear values in the clear menu from LHMI. Clearing CB wear values also resets the operation counter.
  • Page 621: Gas Pressure Supervision

    Section 14 1MRK 502 048-UUS A Monitoring Spring charge time measurement Two binary inputs, SPRCHRGN and SPRCHRGD, indicate spring charging started and spring charged, respectively. The spring charging time is calculated from the difference of these two signal timings. The spring charging time SPRCHRT is available through the Monitored data view . Alarm limit check If the time taken by the spring to charge is more than the value set with the tSprngChrgAlm setting, the subfunction generates the SPRCHRAL alarm.
  • Page 622: Technical Data

    Section 14 1MRK 502 048-UUS A Monitoring The binary input BLOCK can be used to block the function. The activation of the BLOCK input deactivates all outputs and resets internal timers. The alarm signals from the function can be blocked by activating the binary input BLK_ALM. 14.17.8 Technical data Table 432:...
  • Page 623: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring GUID-B8A3A04C-430D-4488-9F72-8529FAB0B17D V1 EN Figure 275: Settings for CMMXU: 1 All input signals to IEC 60870-5-103 I103MEAS must be connected in application configuration. Connect an input signals on IEC 60870-5-103 I103MEAS that is not connected to the corresponding output on MMXU function, to outputs on the fixed signal function block.
  • Page 624: Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.18.3 Signals Table 433: I103MEAS Input signals Name Type Default Description BLOCK BOOLEAN Block of service value reporting REAL Service value for current phase A REAL Service value for current phase B REAL Service value for current phase C REAL Service value for residual current IN...
  • Page 625: I103Measusr

    Section 14 1MRK 502 048-UUS A Monitoring 14.19 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR 14.19.1 Functionality I103MEASUSR is a function block with user defined input measurands in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the Information number parameter for each block.
  • Page 626: Settings

    Section 14 1MRK 502 048-UUS A Monitoring 14.19.4 Settings Table 436: I103MEASUSR Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo 1 - 255 Information number for measurands (1-255) MaxMeasur1 0.05 - 0.05 1000.00...
  • Page 627: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring 14.20.2 Function block I103AR BLOCK 16_ARACT 128_CBON 130_BLKD IEC10000289-2-en.vsd IEC10000289 V2 EN Figure 278: I103AR function block 14.20.3 Signals Table 437: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active...
  • Page 628: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring 14.21.2 Function block I103EF BLOCK 51_EFFW 52_EFREV IEC10000290-1-en.vsd IEC10000290 V1 EN Figure 279: I103EF function block 14.21.3 Signals Table 439: I103EF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 51_EFFW BOOLEAN Information number 51, ground-fault forward...
  • Page 629: Function Block

    Section 14 1MRK 502 048-UUS A Monitoring 14.22.2 Function block I103FLTPROT BLOCK 64_PU_A 65_PU_B 66_PU_C 67_STIN 68_TRGEN 69_TR_A 70_TR_B 71_TR_C 72_TRBKUP 73_SCL 74_FW 75_REV 76_TRANS 77_RECEV 78_ZONE1 79_ZONE2 80_ZONE3 81_ZONE4 82_ZONE5 84_STGEN 85_BFP 86_MTR_A 87_MTR_B 88_MTR_C 89_MTRN 90_IOC 91_IOC 92_IEF 93_IEF ARINPROG FLTLOC...
  • Page 630: Settings

    Section 14 1MRK 502 048-UUS A Monitoring Name Type Default Description 73_SCL REAL Information number 73, fault location in ohm 74_FW BOOLEAN Information number 74, forward/line 75_REV BOOLEAN Information number 75, reverse/busbar 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1...
  • Page 631: Ied Status For Iec 60870-5-103 I103Ied

    Section 14 1MRK 502 048-UUS A Monitoring 14.23 IED status for IEC 60870-5-103 I103IED 14.23.1 Functionality I103IED is a function block with defined IED functions in monitor direction. This block uses parameter as FunctionType, and information number parameter is defined for each input signal.
  • Page 632: Supervison Status For Iec 60870-5-103 I103Superv

    Section 14 1MRK 502 048-UUS A Monitoring 14.24 Supervison status for IEC 60870-5-103 I103SUPERV 14.24.1 Functionality I103SUPERV is a function block with defined functions for supervision indications in monitor direction. This block includes the FunctionType parameter, and the information number parameter is defined for each output signal. 14.24.2 Function block I103SUPERV...
  • Page 633: Status For User Defined Signals For Iec 60870-5-103 I103Usrdef

    Section 14 1MRK 502 048-UUS A Monitoring 14.25 Status for user defined signals for IEC 60870-5-103 I103USRDEF 14.25.1 Functionality I103USRDEF is a function blocks with user defined input signals in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the information number parameter for each input signal.
  • Page 634: Signals

    Section 14 1MRK 502 048-UUS A Monitoring 14.25.3 Signals Table 447: I103USRDEF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting INPUT1 BOOLEAN Binary signal Input 1 INPUT2 BOOLEAN Binary signal input 2 INPUT3 BOOLEAN Binary signal input 3 INPUT4 BOOLEAN Binary signal input 4...
  • Page 635: Pulse Counter Pcggio

    Section 15 1MRK 502 048-UUS A Metering Section 15 Metering 15.1 Pulse counter PCGGIO 15.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse counter PCGGIO S00947 V1 EN 15.1.2 Functionality Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
  • Page 636: Signals

    Section 15 1MRK 502 048-UUS A Metering 15.1.4 Signals Table 449: PCGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function READ_VAL BOOLEAN Initiates an additional pulse counter reading BI_PULSE BOOLEAN Connect binary input channel for metering RS_CNT BOOLEAN Resets pulse counter value Table 450:...
  • Page 637: Monitored Data

    Section 15 1MRK 502 048-UUS A Metering 15.1.6 Monitored data Table 452: PCGGIO Monitored data Name Type Values (Range) Unit Description CNT_VAL INTEGER Actual pulse counter value SCAL_VAL REAL Scaled value with time and status information 15.1.7 Operation principle The registration of pulses is done according to setting of CountCriteria parameter on one of the 9 binary input channels located on the BIO module.
  • Page 638: Technical Data

    Section 15 1MRK 502 048-UUS A Metering readings according to the setting of parameter CountCriteria. The signal must be a pulse with a length >1 second. The BI_PULSE input is connected to the used input of the function block for the binary input output module (BIO).
  • Page 639: Energy Calculation And Demand Handling Etpmmtr

    Section 15 1MRK 502 048-UUS A Metering 15.2 Energy calculation and demand handling ETPMMTR 15.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Energy calculation and demand ETPMMTR handling IEC10000169 V1 EN 15.2.2 Functionality Outputs from the Measurements (CVMMXN) function can be used to calculate energy consumption.
  • Page 640: Signals

    Section 15 1MRK 502 048-UUS A Metering 15.2.4 Signals Table 454: ETPMMTR Input signals Name Type Default Description REAL Measured active power REAL Measured reactive power STACC BOOLEAN Start to accumulate energy values RSTACC BOOLEAN Reset of accumulated enery reading RSTDMD BOOLEAN Reset of maximum demand reading...
  • Page 641: Settings

    Section 15 1MRK 502 048-UUS A Metering 15.2.5 Settings Table 456: ETPMMTR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled StartAcc Disabled Disabled Activate the accumulation of energy values Enabled tEnergy 1 Minute 1 Minute Time interval for energy calculation...
  • Page 642: Monitored Data

    Section 15 1MRK 502 048-UUS A Metering 15.2.6 Monitored data Table 458: ETPMMTR Monitored data Name Type Values (Range) Unit Description EAFACC REAL Accumulated forward active energy value EARACC REAL Accumulated reverse active energy value ERFACC REAL MVArh Accumulated forward reactive energy value ERRACC REAL...
  • Page 643: Technical Data

    Section 15 1MRK 502 048-UUS A Metering ETPMMTR CVMMXN P_INST Q_INST STACC TRUE RSTACC FALSE RSTDMD FALSE IEC09000106.vsd IEC09000106 V1 EN Figure 287: Connection of Energy calculation and demand handling function (ETPMMTR) to the Measurements function (CVMMXN) 15.2.8 Technical data Table 459: ETPMMTR technical data Function...
  • Page 645: Dnp3 Protocol

    Section 16 1MRK 502 048-UUS A Station communication Section 16 Station communication 16.1 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual. 16.2 IEC 61850-8-1 communication protocol 16.2.1...
  • Page 646: Communication Interfaces And Protocols

    Section 16 1MRK 502 048-UUS A Station communication interoperates with other IEC 61850-compliant IEDs, and systems and simultaneously reports events to five different clients on the IEC 61850 station bus. The Denial of Service functions DOSLAN1 and DOSFRNT are included to limit the inbound network traffic.
  • Page 647: Settings

    Section 16 1MRK 502 048-UUS A Station communication 16.2.4 Settings Table 461: IEC61850-8-1 Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled PortSelGOOSE Front LAN1 Port selection for GOOSE communication LAN1 PortSelMMS Front LAN1 Port selection for MMS communication...
  • Page 648: Function Block

    Section 16 1MRK 502 048-UUS A Station communication 16.3.2 Function block GOOSEINTLKRCV BLOCK ^RESREQ ^RESGRANT ^APP1_OP ^APP1_CL APP1VAL ^APP2_OP ^APP2_CL APP2VAL ^APP3_OP ^APP3_CL APP3VAL ^APP4_OP ^APP4_CL APP4VAL ^APP5_OP ^APP5_CL APP5VAL ^APP6_OP ^APP6_CL APP6VAL ^APP7_OP ^APP7_CL APP7VAL ^APP8_OP ^APP8_CL APP8VAL ^APP9_OP ^APP9_CL APP9VAL ^APP10_OP...
  • Page 649 Section 16 1MRK 502 048-UUS A Station communication Table 464: GOOSEINTLKRCV Output signals Name Type Description RESREQ BOOLEAN Reservation request RESGRANT BOOLEAN Reservation granted APP1_OP BOOLEAN Apparatus 1 position is open APP1_CL BOOLEAN Apparatus 1 position is closed APP1VAL BOOLEAN Apparatus 1 position is valid APP2_OP BOOLEAN...
  • Page 650: Settings

    Section 16 1MRK 502 048-UUS A Station communication Name Type Description APP12_OP BOOLEAN Apparatus 12 position is open APP12_CL BOOLEAN Apparatus 12 position is closed APP12VAL BOOLEAN Apparatus 12 position is valid APP13_OP BOOLEAN Apparatus 13 position is open APP13_CL BOOLEAN Apparatus 13 position is closed APP13VAL...
  • Page 651: Function Block

    Section 16 1MRK 502 048-UUS A Station communication 16.4.2 Function block GOOSEBINRCV BLOCK ^OUT1 OUT1VAL ^OUT2 OUT2VAL ^OUT3 OUT3VAL ^OUT4 OUT4VAL ^OUT5 OUT5VAL ^OUT6 OUT6VAL ^OUT7 OUT7VAL ^OUT8 OUT8VAL ^OUT9 OUT9VAL ^OUT10 OUT10VAL ^OUT11 OUT11VAL ^OUT12 OUT12VAL ^OUT13 OUT13VAL ^OUT14 OUT14VAL ^OUT15 OUT15VAL...
  • Page 652: Settings

    Section 16 1MRK 502 048-UUS A Station communication Name Type Description OUT3 BOOLEAN Binary output 3 OUT3VAL BOOLEAN Valid data on binary output 3 OUT4 BOOLEAN Binary output 4 OUT4VAL BOOLEAN Valid data on binary output 4 OUT5 BOOLEAN Binary output 5 OUT5VAL BOOLEAN Valid data on binary output 5...
  • Page 653: Operation Principle

    Section 16 1MRK 502 048-UUS A Station communication 16.4.5 Operation principle The OUTxVAL output, where 1≤x≤16, will be HIGH if the incoming message is with valid data. The OUTxVAL output contains both quality validity and communication validity since GOOSEBINRCV function has no COMMVALID output. The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary values.
  • Page 654: Function Block

    Section 16 1MRK 502 048-UUS A Station communication 16.5.3 Function block GOOSEDPRCV BLOCK ^DPOUT DATAVALID COMMVALID TEST IEC10000249-1-en.vsd IEC10000249 V1 EN Figure 290: GOOSEDPRCV function block 16.5.4 Signals Table 469: GOOSEDPRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 470: GOOSEDPRCV Output signals Name...
  • Page 655: Goose Function Block To Receive An Integer Value Gooseintrcv

    Section 16 1MRK 502 048-UUS A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the double point values. The implementation for IEC61850 quality data handling is restricted to a simple level.
  • Page 656: Signals

    Section 16 1MRK 502 048-UUS A Station communication 16.6.4 Signals Table 472: GOOSEINTRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 473: GOOSEINTRCV Output signals Name Type Description INTOUT INTEGER Integer output DATAVALID BOOLEAN Data valid for integer output COMMVALID BOOLEAN Communication valid for integer output...
  • Page 657: Functionality

    Section 16 1MRK 502 048-UUS A Station communication 16.7 GOOSE function block to receive a measurand value GOOSEMVRCV 16.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number GOOSE function block to receive a GOOSEMVRCV measurand value 16.7.2 Functionality GOOSEMVRCV is used to receive measured value using IEC61850 protocol via...
  • Page 658: Settings

    Section 16 1MRK 502 048-UUS A Station communication 16.7.5 Settings Table 477: GOOSEMVRCV Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled 16.7.6 Operation principle The DATAVALID output will be HIGH if the incoming message is with valid data. The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen.
  • Page 659: Functionality

    Section 16 1MRK 502 048-UUS A Station communication 16.8.2 Functionality GOOSESPRCV is used to receive a single point value using IEC61850 protocol via GOOSE. 16.8.3 Function block GOOSESPRCV BLOCK ^SPOUT DATAVALID COMMVALID TEST IEC10000248-1-en.vsd IEC10000248 V1 EN Figure 293: GOOSESPRCV function block 16.8.4 Signals Table 478:...
  • Page 660: Iec 60870-5-103 Communication Protocol

    Section 16 1MRK 502 048-UUS A Station communication The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen. The TEST output will go HIGH if the sending IED is in test mode. The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary single point values.
  • Page 661: Settings

    Section 16 1MRK 502 048-UUS A Station communication The function IEC60870-5-103 serial communication for RS485, RS485103, is used to configure the communication parameters for the RS485 serial communication interface. 16.9.2 Settings Table 481: OPTICAL103 Non group settings (basic) Name Values (Range) Unit Step Default...
  • Page 662: Iec 61850-8-1 Redundant Station Bus Communication

    Section 16 1MRK 502 048-UUS A Station communication 16.10 IEC 61850-8-1 redundant station bus communication Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number System component for parallel PRPSTATUS redundancy protocol 16.10.1 Functionality Redundant station bus communication according to IEC 62439-3 Edition 2 is available as option in the Customized 650 Ver 1.3 series IEDs, and the selection is made at ordering.
  • Page 663: Function Block

    Section 16 1MRK 502 048-UUS A Station communication Station Control System Redundancy Supervision Data Data Switch A Switch B Data Data COM03 PRPSTATUS IEC13000003-1-en.vsd IEC13000003 V1 EN Figure 294: Redundant station bus 16.10.3 Function block PRPSTATUS LAN1-A LAN1-B IEC13000011-1-en.vsd IEC13000011 V1 EN Figure 295: PRPSTATUS function block Technical manual...
  • Page 664: Setting Parameters

    Section 16 1MRK 502 048-UUS A Station communication Table 483: PRPSTATUS Output signals Name Type Description LAN1-A BOOLEAN LAN1 channel A status LAN1-B BOOLEAN LAN1 channel B status 16.10.4 Setting parameters The PRPSTATUS function has no user settings. However, the redundant communication is configured in the LHMI under Main menu/ Configuration/Communication/TCP-IP configuration/ETHLAN1_AB where Operation mode, IPAddress and IPMask are configured.
  • Page 665: Generic Security Application Component Agsal

    Section 16 1MRK 502 048-UUS A Station communication Name Values (Range) Unit Step Default Description ExtLogSrv3Type Disabled Disabled External log server 3 type ExtLogSrv1Type SYSLOG TCP/IP CEF TCP/IP ExtLogSrv3Port 1 - 65535 External log server 3 port number ExtLogSrv3IP 0 - 18 127.0.0.1 External log server 3 IP-address Address...
  • Page 666: Security Events On Protocols Secalarm

    Section 16 1MRK 502 048-UUS A Station communication 16.13 Security events on protocols SECALARM 16.13.1 Security alarm SECALARM 16.13.2 Signals Table 485: SECALARM Output signals Name Type Description EVENTID INTEGER EventId of the generated security event SEQNUMBER INTEGER Sequence number of the generated security event 16.13.3 Settings Table 486:...
  • Page 667: Self Supervision With Internal Event List

    Section 17 1MRK 502 048-UUS A Basic IED functions Section 17 Basic IED functions 17.1 Self supervision with internal event list 17.1.1 Functionality The Self supervision with internal event list INTERRSIG and SELFSUPEVLST function reacts to internal system events generated by the different built-in self-supervision elements.
  • Page 668: Signals

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.1.2.3 Signals Table 487: INTERRSIG Output signals Name Type Description FAIL BOOLEAN Internal fail WARNING BOOLEAN Internal warning TSYNCERR BOOLEAN Time synchronization error RTCERR BOOLEAN Real time clock error DISABLE BOOLEAN Application Disable 17.1.2.4 Settings...
  • Page 669 Section 17 1MRK 502 048-UUS A Basic IED functions Diagnostics/Internal events or Main menu/Diagnostics/IED status/General. The information from the self-supervision function is also available in the Event Viewer in PCM600. Both events from the Event list and the internal events are listed in time consecutive order in the Event Viewer.
  • Page 670 Section 17 1MRK 502 048-UUS A Basic IED functions LIODEV FAIL LIODEV STOPPED e.g. BIO1- ERROR LIODEV STARTED SW Watchdog Error Internal Fail WDOG STARVED Runtime Exec Error RTE FATAL ERROR File System Error FTF FATAL ERROR RTE APP FAILED Runtime App Error RTE ALL APPS OK GENTS RTC ERROR...
  • Page 671: Internal Signals

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.1.4.1 Internal signals SELFSUPEVLST function provides several status signals, that tells about the condition of the IED. As they provide information about the internal status of the IED, they are also called internal signals.
  • Page 672: Run-Time Model

    Section 17 1MRK 502 048-UUS A Basic IED functions Table 490: Explanations of internal signals Name of signal Reasons for activation Internal Fail This signal will be active if one or more of the following internal signals are active; Real Time Clock Error, Runtime App Error, Runtime Exec Error, SW Watchdog Error, File System Error Internal Warning This signal will be active if one or more of the following internal...
  • Page 673: Technical Data

    Section 17 1MRK 502 048-UUS A Basic IED functions ADx_Low Controller ADx_High IEC05000296-3-en.vsd IEC05000296 V3 EN Figure 299: Simplified drawing of A/D converter for the IED. The technique to split the analog input signal into two A/D converter(s) with different amplification makes it possible to supervise the A/D converters under normal conditions where the signals from the two A/D converters should be identical.
  • Page 674: Time Synchronization

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.2 Time synchronization 17.2.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED when it is a part of a protection system. This makes it possible to compare event and disturbance data between all IEDs in a station automation system.
  • Page 675: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.2.3.2 Settings Table 493: SNTP Non group settings (basic) Name Values (Range) Unit Step Default Description ServerIP-Add 0 - 255 0.0.0.0 Server IP-address Address RedServIP-Add 0 - 255 0.0.0.0 Redundant server IP-address Address 17.2.4 Time system, summer time begin DSTBEGIN...
  • Page 676: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.2.4.2 Settings Table 494: DSTBEGIN Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January March Month in year when daylight time starts February March April June July August September October...
  • Page 677: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.2.5.2 Settings Table 495: DSTEND Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January October Month in year when daylight time ends February March April June July August September October...
  • Page 678: Time Synchronization Via Irig-B

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.2.7 Time synchronization via IRIG-B 17.2.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time synchronization via IRIG-B IRIG-B 17.2.7.2 Settings Table 497: IRIG-B Non group settings (basic) Name Values (Range) Unit...
  • Page 679 Section 17 1MRK 502 048-UUS A Basic IED functions Design of the time system (clock synchronization) External Time tagging and general synchronization synchronization sources Protection Commu Events and control Disabled - nication functions SNTP Time- IRIG-B regulator SW- time IEC60870-5-103 ANSI09000210-1-en.vsd ANSI09000210 V1 EN Figure 300:...
  • Page 680: Real-Time Clock (Rtc) Operation

    Section 17 1MRK 502 048-UUS A Basic IED functions • The maximum error of the last used synchronization message • The time since the last used synchronization message • The rate accuracy of the internal clock in the function. 17.2.8.2 Real-time clock (RTC) operation The IED has a built-in real-time clock (RTC) with a resolution of one second.
  • Page 681: Synchronization Alternatives

    Section 17 1MRK 502 048-UUS A Basic IED functions time-out is set so that one message can be lost without getting a TSYNCERR, but if more than one message is lost, a TSYNCERR is given. 17.2.8.3 Synchronization alternatives Two main alternatives of external time synchronization are available. The synchronization message is applied either via any of the communication ports of the IED as a telegram message including date and time or via IRIG-B.
  • Page 682: Technical Data

    Section 17 1MRK 502 048-UUS A Basic IED functions The IRIG-B input also takes care of IEEE1344 messages that are sent by IRIG-B clocks, as IRIG-B previously did not have any year information. IEEE1344 is compatible with IRIG-B and contains year information and information of the time-zone. It is recommended to use IEEE 1344 for supplying time information to the IRIG-B module.
  • Page 683: Setting Group Handling Setgrps

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.3.2 Setting group handling SETGRPS 17.3.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Setting group handling SETGRPS 17.3.2.2 Settings Table 499: SETGRPS Non group settings (basic) Name Values (Range) Unit...
  • Page 684: Signals

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.3.3.3 Signals Table 500: ACTVGRP Input signals Name Type Default Description ACTGRP1 BOOLEAN Selects setting group 1 as active ACTGRP2 BOOLEAN Selects setting group 2 as active ACTGRP3 BOOLEAN Selects setting group 3 as active ACTGRP4 BOOLEAN Selects setting group 4 as active...
  • Page 685: Test Mode Functionality Testmode

    Section 17 1MRK 502 048-UUS A Basic IED functions More than one input may be activated at the same time. In such cases the lower order setting group has priority. This means that if for example both group four and group two are set to be activated, group two will be the one activated.
  • Page 686: Functionality

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.4.2 Functionality When the Test mode functionality TESTMODE is activated, all the functions in the IED are automatically blocked. Activated TESTMODE is indicating by a flashing yellow LED on the local HMI. It is then possible to unblock every function(s) individually from the local HMI to perform required tests.
  • Page 687: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.4.5 Settings Table 504: TESTMODE Non group settings (basic) Name Values (Range) Unit Step Default Description TestMode Disabled Disabled Test mode in operation (Enabled) or not Enabled (Disabled) EventDisable Disabled Disabled Event disable during testmode Enabled CmdTestBit...
  • Page 688: Change Lock Function Chnglck

    Section 17 1MRK 502 048-UUS A Basic IED functions When a binary input is used to set the IED in test mode and a parameter, that requires restart of the application, is changed, the IED will re-enter test mode and all functions will be blocked, also functions that were unblocked before the change.
  • Page 689: Function Block

    Section 17 1MRK 502 048-UUS A Basic IED functions logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action. 17.5.3 Function block CHNGLCK...
  • Page 690: Ied Identifiers Terminalid

    Section 17 1MRK 502 048-UUS A Basic IED functions • Clear disturbances • Reset LEDs • Reset counters and other runtime component states • Control operations • Set system time • Enter and exit from test mode • Change of active setting group The binary input signal LOCK controlling the function is defined in ACT or SMT: Binary input Function...
  • Page 691: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.6.3 Settings Table 507: TERMINALID Non group settings (basic) Name Values (Range) Unit Step Default Description StationName 0 - 18 Station name Station name StationNumber 0 - 99999 Station number ObjectName 0 - 18 Object name Object name...
  • Page 692: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.7.3 Settings The function does not have any parameters available in the local HMI or PCM600. 17.8 Primary system values PRIMVAL 17.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 693: Identification

    Section 17 1MRK 502 048-UUS A Basic IED functions The SMAI function blocks for the 650 series of products are possible to set for two cycle times either 5 or 20ms. The function blocks connected to a SMAI function block shall always have the same cycle time as the SMAI block.
  • Page 694: Signals

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.9.4 Signals Table 509: SMAI_20_1 Input signals Name Type Default Description BLOCK BOOLEAN Block group 1 DFTSPFC REAL 20.0 Number of samples per fundamental cycle used for DFT calculation REVROT BOOLEAN Reverse rotation group 1 GRP1_A STRING...
  • Page 695: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions Table 512: SMAI_20_12 Output signals Name Type Description AI3P GROUP SIGNAL Grouped three phase signal containing data from inputs GROUP SIGNAL Quantity connected to the first analog input GROUP SIGNAL Quantity connected to the second analog input GROUP SIGNAL Quantity connected to the third analog input GROUP SIGNAL...
  • Page 696 Section 17 1MRK 502 048-UUS A Basic IED functions Table 514: SMAI_20_1 Non group settings (advanced) Name Values (Range) Unit Step Default Description Negation Disabled Disabled Negation NegateN Negate3Ph Negate3Ph+N MinValFreqMeas 5 - 200 Limit for frequency calculation in % of VBase Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible.
  • Page 697: Operation Principle

    Section 17 1MRK 502 048-UUS A Basic IED functions Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible. This means that the minimum level for current amplitude is based on VBase. For example, if VBase is 20000, the minimum amplitude for current is 20000 * 10% = 2000.
  • Page 698 Section 17 1MRK 502 048-UUS A Basic IED functions • It is not mandatory to connect all the inputs of SMAI function. However, it is very important that same set of three phase analog signals should be connected to one SMAI function.
  • Page 699 Section 17 1MRK 502 048-UUS A Basic IED functions set system frequency. DFTReference set to DFTRefGrpX uses DFT reference from the selected group block, when own group selected adaptive DFT reference will be used based on the calculated signal frequency from own group. DFTReference set to External DFT Ref will use reference based on input signal DFTSPFC.
  • Page 700 Section 17 1MRK 502 048-UUS A Basic IED functions Task time group 1 Task time group 2 (5ms) (20ms) SMAI_20_1 SMAI_20_1 BLOCK SPFCOUT BLOCK SPFCOUT DFTSPFC AI3P DFTSPFC AI3P REVROT REVROT ^GRP1_A ^GRP1_A ^GRP1_B ^GRP1_B ^GRP1_C ^GRP1_C ^GRP1_N ^GRP1_N Task time group 1 (5ms) Task time group 2 (20ms) SMAI instance 3 phase group SMAI instance 3 phase group...
  • Page 701: Summation Block 3 Phase 3Phsum

    Section 17 1MRK 502 048-UUS A Basic IED functions For SMAI_20_1:2 to SMAI_20_12:2 DFTReference set to External DFT ref to use DFTSPFC input as reference. 17.10 Summation block 3 phase 3PHSUM 17.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 702: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions Table 518: 3PHSUM Output signals Name Type Description AI3P GROUP SIGNAL Linear combination of two connected three phase inputs GROUP SIGNAL Linear combination of input 1 signals from both SMAI blocks GROUP SIGNAL Linear combination of input 2 signals from both SMAI blocks...
  • Page 703: Identification

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Global base values GBASVAL 17.11.2 Functionality Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED.
  • Page 704: Functionality

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.12.2 Functionality To safeguard the interests of our customers, both the IED and the tools that are accessing the IED are protected, by means of authorization handling. The authorization handling of the IED and the PCM600 is implemented at both access points to the IED: •...
  • Page 705: Operation Principle

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.12.4 Operation principle There are different levels (or types) of users that can access or operate different areas of the IED and tools functionality. The pre-defined user types are given in Table 522.
  • Page 706: Authority Management Authman

    Section 17 1MRK 502 048-UUS A Basic IED functions If one or more users are created with the IED User Management and written to the IED, then, when a user attempts a Log on by pressing the key or when the user attempts to perform an operation that is password protected, the Log on window opens.
  • Page 707: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.13.3 Settings Table 523: AUTHMAN Non group settings (basic) Name Values (Range) Unit Step Default Description MaintMenuEnable Maintenance menu enabled AuthTimeout 10 Min 10 Min Authority blocking timeout 20 Min 30 Min 40 Min 50 Min 60 Min...
  • Page 708: Settings

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.14.3 Settings Table 524: FTPACCS Non group settings (basic) Name Values (Range) Unit Step Default Description PortSelection None Front+LAN1 Port selection for communication Front LAN1 Front+LAN1 SSLMode FTP+FTPS FTPS Support for AUTH TLS/SSL FTPS TCPPortFTP 1 - 65535...
  • Page 709: Signals

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.15.4 Signals Table 525: ATHSTAT Output signals Name Type Description USRBLKED BOOLEAN At least one user is blocked by invalid password LOGGEDON BOOLEAN At least one user is logged on 17.15.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600)
  • Page 710: Denial Of Service, Frame Rate Control For Front Port Dosfrnt

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.16.2 Denial of service, frame rate control for front port DOSFRNT 17.16.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Denial of service, frame rate control for DOSFRNT front port 17.16.2.2...
  • Page 711: Monitored Data

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.16.2.5 Monitored data Table 527: DOSFRNT Monitored data Name Type Values (Range) Unit Description State INTEGER 0=Off Frame rate control state 1=Normal 2=Throttle 3=DiscardLow 4=DiscardAll 5=StopPoll Quota INTEGER Quota level in percent 0-100 IPPackRecNorm INTEGER Number of IP packets...
  • Page 712: Signals

    Section 17 1MRK 502 048-UUS A Basic IED functions 17.16.3.3 Signals Table 528: DOSLAN1 Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state ALARM BOOLEAN Frame rate is higher than throttle state 17.16.3.4 Settings The function does not have any parameters available in the local HMI or PCM600.
  • Page 713 Section 17 1MRK 502 048-UUS A Basic IED functions • LINKUP indicates the Ethernet link status • WARNING indicates that communication (frame rate) is higher than normal • ALARM indicates that the IED limits communication Technical manual...
  • Page 715: Protective Ground Connections

    Section 18 1MRK 502 048-UUS A IED physical connections Section 18 IED physical connections 18.1 Protective ground connections The IED shall be grounded with a 6 Gauge flat copper cable. The ground lead should be as short as possible, less than 59.06 inches (1500 mm).
  • Page 716: Inputs

    Section 18 1MRK 502 048-UUS A IED physical connections 18.2 Inputs 18.2.1 Measuring inputs Table 530: Analog input modules TRM Terminal 6I + 4U 8I + 2U 4I + 1I + 5U 4I + 6U X101-1, 2 1/5A 1/5A 1/5A 1/5A X101-3, 4 1/5A...
  • Page 717: Auxiliary Supply Voltage Input

    Section 18 1MRK 502 048-UUS A IED physical connections 18.2.2 Auxiliary supply voltage input The auxiliary voltage of the IED is connected to terminals X420-1 and X420-2/3. The terminals used depend on the power supply. The permitted auxiliary voltage range of the IED is marked on top of the IED's LHMI. Table 532: Auxiliary voltage supply of 110...250 V DC or 100...240 V AC Case...
  • Page 718 Section 18 1MRK 502 048-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X304-6 Binary input 4 + COM_101 X304-7 Binary input 5 + COM_101 X304-8 Binary input 6 + COM_101 X304-9 Common - for inputs 7-9 X304-10 Binary input 7 + COM_101...
  • Page 719 Section 18 1MRK 502 048-UUS A IED physical connections Table 537: Binary inputs X329, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X329-1 - for input 1 BIO_4 X329-2 Binary input 1 + BIO_4 X329-3 X329-4 Common - for inputs 2-3 X329-5 Binary input 2 +...
  • Page 720 Section 18 1MRK 502 048-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X334-11 X334-12 Common - for inputs 6-7 X334-13 Binary input 6 + BIO_5 X334-14 Binary input 7 + BIO_5 X334-15 X334-16 Common - for inputs 8-9 X334-17 Binary input 8 + BIO_5...
  • Page 721: Outputs

    Section 18 1MRK 502 048-UUS A IED physical connections 18.3 Outputs 18.3.1 Outputs for tripping, controlling and signalling Output contacts PO1, PO2 and PO3 are power output contacts used, for example, for controlling circuit breakers. Each signal connector terminal is connected with one 14 or 16 Gauge wire. Use 12 or 14 Gauge wire for CB trip circuit.
  • Page 722 Section 18 1MRK 502 048-UUS A IED physical connections Table 541: Output contacts X321, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X321-1 Power output 1, normally open BIO_3 BO1_PO X321-2 X321-3 Power output 2, normally open BIO_3 BO2_PO X321-4...
  • Page 723: Outputs For Signalling

    Section 18 1MRK 502 048-UUS A IED physical connections Table 544: Output contacts X336, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X336-1 Power output 1, normally open BIO_6 BO1_PO X336-2 X336-3 Power output 2, normally open BIO_6 BO2_PO X336-4...
  • Page 724 Section 18 1MRK 502 048-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X321-12 Signal output 3 X321-13 Signal output 4, normally open BIO_3 BO7_SO X321-14 Signal output 5, normally open BIO_3 BO8_SO X321-15 Signal outputs 4 and 5, common X321-16 Signal output 6, normally closed BIO_3...
  • Page 725 Section 18 1MRK 502 048-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X331-12 Signal output 3 X331-13 Signal output 4, normally open BIO_5 BO7_SO X331-14 Signal output 5, normally open BIO_5 BO8_SO X331-15 Signal outputs 4 and 5, common X331-16 Signal output 6, normally closed BIO_5...
  • Page 726: Communication Connections

    Section 18 1MRK 502 048-UUS A IED physical connections Table 550: IRF contact X319 Case Terminal Description 3U full 19” X319-1 Closed; no IRF, and V connected X319-2 Closed; IRF, or V disconnected X319-3 IRF, common 18.4 Communication connections The IED's LHMI is provided with an RJ-45 connector. The connector is intended for configuration and setting purposes.
  • Page 727: Station Communication Rear Connection

    Section 18 1MRK 502 048-UUS A IED physical connections 18.4.2 Station communication rear connection The default IP address of the IED through the Ethernet connection is 192.168.1.10. The physical connector is X1/LAN1. The interface speed is 100 Mbps for the 100BASE-FX LC alternative.
  • Page 728: Communication Interfaces And Protocols

    ● ● ● = Supported 18.4.6 Recommended industrial Ethernet switches ABB recommends ABB industrial Ethernet switches. 18.5 Connection diagrams The connection diagrams are delivered on the IED Connectivity package DVD as part of the product delivery. The latest versions of the connection diagrams can be downloaded from http://www.abb.com/substationautomation.
  • Page 729: Dimensions

    Section 19 1MRK 502 048-UUS A Technical data Section 19 Technical data 19.1 Dimensions Table 552: Dimensions of the IED - 3U full 19" rack Description Value Width 17.48 inches (444 mm) Height 5.20 inches (132 mm), 3U Depth 9.82 inches (249.5 mm) Weight box <22.04 lbs (10 kg) 19.2...
  • Page 730: Energizing Inputs

    Section 19 1MRK 502 048-UUS A Technical data 19.3 Energizing inputs Table 554: TRM — Energizing quantities, rated values and limits for transformer inputs Description Value Frequency Rated frequency f 50 or 60 Hz Operating range ± 10% Current inputs Rated current I 0.1 or 0.5 A 1 or 5 A...
  • Page 731: Binary Inputs

    Section 19 1MRK 502 048-UUS A Technical data 19.4 Binary inputs Table 555: Binary inputs Description Value Operating range Maximum input voltage 300 V DC Rated voltage 24...250 V DC Current drain 1.6...1.8 mA Power consumption/input <0.38 W Threshold voltage 15...221 V DC (parametrizable in the range in steps of 1% of the rated voltage) 19.5...
  • Page 732: Data Communication Interfaces

    Section 19 1MRK 502 048-UUS A Technical data Table 558: Power output relays with TCM function Description Value Rated voltage 250 V DC Continuous contact carry Make and carry for 3.0 s 15 A Make and carry for 0.5 s 30 A Breaking capacity when the control-circuit time ≤1 A/≤0.3 A/≤0.1 A...
  • Page 733: Enclosure Class

    Section 19 1MRK 502 048-UUS A Technical data Table 562: IRIG-B Type Value Accuracy Input impedance 430 Ohm Minimum input voltage 4.3 V HIGH Maximum input voltage 0.8 V Table 563: EIA-485 interface Type Value Conditions Minimum differential 1.5 V –...
  • Page 734: Ingress Protection

    Section 19 1MRK 502 048-UUS A Technical data 19.9 Ingress protection Table 566: Ingress protection Description Value IED front IP 54 IED rear IP 20 IED sides IP 40 IED top IP 40 IED bottom IP 20 19.10 Environmental conditions and tests Table 567: Environmental conditions Description...
  • Page 735: Electromagnetic Compatibility Tests

    Section 20 1MRK 502 048-UUS A IED and functionality tests Section 20 IED and functionality tests 20.1 Electromagnetic compatibility tests Table 569: Electromagnetic compatibility tests Description Type test value Reference 100 kHz and 1 MHz burst IEC 61000-4-18, level 3 disturbance test IEC 60255-22-1 ANSI C37.90.1-2012...
  • Page 736 Section 20 1MRK 502 048-UUS A IED and functionality tests Description Type test value Reference Power frequency (50 Hz) IEC 61000-4-8, level 5 magnetic field • 1000 A/m • Continuous 100 A/m Pulse magnetic field immunity 1000A/m IEC 61000–4–9, level 5 test Damped oscillatory magnetic 100A/m, 100 kHz and 1MHz...
  • Page 737: Insulation Tests

    Section 20 1MRK 502 048-UUS A IED and functionality tests Description Type test value Reference 88 – 216 MHz < 43,52 dB(µV/m) quasi peak, measured at 10 m distance 216 – 960 MHz < 46,44 dB(µV/m) quasi peak, measured at 10 m distance 960 –...
  • Page 738: Product Safety

    Section 20 1MRK 502 048-UUS A IED and functionality tests Description Reference Requirement Shock withstand test IEC 60255-21-2 Class 1 Bump test IEC 60255-21-2 Class 1 Seismic test IEC 60255-21-3 Class 2 20.4 Product safety Table 572: Product safety Description Reference LV directive 2006/95/EC...
  • Page 739: Section 21 Time Inverse Characteristics

    Section 21 1MRK 502 048-UUS A Time inverse characteristics Section 21 Time inverse characteristics 21.1 Application In order to assure time selectivity between different overcurrent protections in different points in the network different time delays for the different relays are normally used. The simplest way to do this is to use definite time delay.
  • Page 740 Section 21 1MRK 502 048-UUS A Time inverse characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 317: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections.
  • Page 741 Section 21 1MRK 502 048-UUS A Time inverse characteristics Feeder Time axis en05000132_ansi.vsd ANSI05000132 V1 EN Figure 318: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall operate without any intentional delay (instantaneous).
  • Page 742: Operation Principle

    Section 21 1MRK 502 048-UUS A Time inverse characteristics • If there is a risk of intermittent faults. If the current relay, close to the faults, picks up and resets there is a risk of unselective trip from other protections in the system. •...
  • Page 743 Section 21 1MRK 502 048-UUS A Time inverse characteristics For inverse time characteristics a time will be initiated when the current reaches the set pickup level. From the general expression of the characteristic the following can be seen: æ ö æ...
  • Page 744 Section 21 1MRK 502 048-UUS A Time inverse characteristics For the IEC curves there is also a setting of the minimum time-lag of operation, see figure 319. Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 319: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current pickup value.
  • Page 745: Inverse Time Characteristics

    Section 21 1MRK 502 048-UUS A Time inverse characteristics æ ö ç ÷ ç ÷ Pickupn ç ÷ ç ÷ × 0.339 0.235 è ø (Equation 121) EQUATION1647 V1 EN where: Pickupn is the set pickup current for step n is set time multiplier for step n is the measured current The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection...
  • Page 746 Section 21 1MRK 502 048-UUS A Time inverse characteristics Table 574: ANSI Inverse time characteristics Function Range or value Accuracy Operating characteristic: td = (0.05-999) in steps of 0.01 æ ö ç ÷ × ç ÷ è ø EQUATION1651 V1 EN I = I measured ANSI Extremely Inverse...
  • Page 747 Section 21 1MRK 502 048-UUS A Time inverse characteristics Table 576: RI and RD type inverse time characteristics Function Range or value Accuracy RI type inverse characteristic td = (0.05-999) in steps of 0.01 × 0.236 0.339 EQUATION1656 V1 EN I = I measured RD type logarithmic inverse characteristic...
  • Page 748 Section 21 1MRK 502 048-UUS A Time inverse characteristics Table 578: Inverse time characteristics for undervoltage protection Function Range or value Accuracy Type A curve: td = (0.05-1.10) in steps of ±5% +60 ms 0.01 æ ö VPickup V ç ÷...
  • Page 749 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070750 V2 EN Figure 320: ANSI Extremely inverse time characteristics Technical manual...
  • Page 750 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070751 V2 EN Figure 321: ANSI Very inverse time characteristics Technical manual...
  • Page 751 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070752 V2 EN Figure 322: ANSI Normal inverse time characteristics Technical manual...
  • Page 752 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070753 V2 EN Figure 323: ANSI Moderately inverse time characteristics Technical manual...
  • Page 753 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070817 V2 EN Figure 324: ANSI Long time extremely inverse time characteristics Technical manual...
  • Page 754 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070818 V2 EN Figure 325: ANSI Long time very inverse time characteristics Technical manual...
  • Page 755 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070819 V2 EN Figure 326: ANSI Long time inverse time characteristics Technical manual...
  • Page 756 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070820 V2 EN Figure 327: IEC Normal inverse time characteristics Technical manual...
  • Page 757 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070821 V2 EN Figure 328: IEC Very inverse time characteristics Technical manual...
  • Page 758 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070822 V2 EN Figure 329: IEC Inverse time characteristics Technical manual...
  • Page 759 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070823 V2 EN Figure 330: IEC Extremely inverse time characteristics Technical manual...
  • Page 760 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070824 V2 EN Figure 331: IEC Short time inverse time characteristics Technical manual...
  • Page 761 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070825 V2 EN Figure 332: IEC Long time inverse time characteristics Technical manual...
  • Page 762 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070826 V2 EN Figure 333: RI-type inverse time characteristics Technical manual...
  • Page 763 Section 21 1MRK 502 048-UUS A Time inverse characteristics A070827 V2 EN Figure 334: RD-type inverse time characteristics Technical manual...
  • Page 764 Section 21 1MRK 502 048-UUS A Time inverse characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 335: Inverse curve A characteristic of overvoltage protection Technical manual...
  • Page 765 Section 21 1MRK 502 048-UUS A Time inverse characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 336: Inverse curve B characteristic of overvoltage protection Technical manual...
  • Page 766 Section 21 1MRK 502 048-UUS A Time inverse characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 337: Inverse curve C characteristic of overvoltage protection Technical manual...
  • Page 767 Section 21 1MRK 502 048-UUS A Time inverse characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 338: Inverse curve A characteristic of undervoltage protection Technical manual...
  • Page 768 Section 21 1MRK 502 048-UUS A Time inverse characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 339: Inverse curve B characteristic of undervoltage protection Technical manual...
  • Page 769: Section 22 Glossary

    Section 22 1MRK 502 048-UUS A Glossary Section 22 Glossary Alternating current Actual channel Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer Adaptive signal detection ASDU Application service data unit...
  • Page 770 Section 22 1MRK 502 048-UUS A Glossary COMTRADE Standard Common Format for Transient Data Exchange format for Disturbance recorder according to IEEE/ANSI C37.111, 1999 / IEC60255-24 Cause of transmission Central processing unit Carrier receive Cyclic redundancy check CROB Control relay output block Carrier send Current transformer Communication unit...
  • Page 771 Section 22 1MRK 502 048-UUS A Glossary Electromagnetic interference EnFP End fault protection Enhanced performance architecture Electrostatic discharge F-SMA Type of optical fibre connector Fault number Flow control bit; Frame count bit FOX 20 Modular 20 channel telecommunication system for speech, data and protection signals FOX 512/515 Access multiplexer...
  • Page 772 Section 22 1MRK 502 048-UUS A Glossary IEC 60870-5-103 Communication standard for protective equipment. A serial master/slave protocol for point-to-point communication IEC 61850 Substation automation communication standard IEC 61850–8–1 Communication protocol standard IEEE Institute of Electrical and Electronics Engineers IEEE 802.12 A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable IEEE P1386.1...
  • Page 773 Section 22 1MRK 502 048-UUS A Glossary IRIG-B: InterRange Instrumentation Group Time code format B, standard 200 International Telecommunications Union Local area network Liquid crystal display Local detection device Light-emitting diode LON network tool Miniature circuit breaker MVAL Value of measurement National Control Centre Number of grid faults Numerical module...
  • Page 774 Section 22 1MRK 502 048-UUS A Glossary PT ratio Potential transformer or voltage transformer ratio PUTT Permissive underreach transfer trip Relay characteristic angle RISC Reduced instruction set computer RMS value Root mean square value RS422 A balanced serial interface for the transmission of digital data in point-to-point connections RS485 Serial link according to EIA standard RS485...
  • Page 775 Section 22 1MRK 502 048-UUS A Glossary Trip coil Trip circuit supervision Transmission control protocol. The most common transport layer protocol used on Ethernet and the Internet. TCP/IP Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix.
  • Page 776 Section 22 1MRK 502 048-UUS A Glossary Coordinated Universal Time is expressed using a 24-hour clock, and uses the Gregorian calendar. It is used for aeroplane and ship navigation, where it is also sometimes known by the military name, "Zulu time." "Zulu" in the phonetic alphabet stands for "Z", which stands for longitude zero.
  • Page 778 Any reproduction, Phone +46 (0) 21 32 50 00 disclosure to third parties or utilization of its contents – in whole or in part – is forbidden without prior written consent of ABB AB. www.abb.com/protection-control © Copyright 2013 ABB.

This manual is also suitable for:

650 seriesReg650 ansi

Table of Contents